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At slow to ultraslow spreading rates along mid-ocean ridges, thicker lithosphere typically 
impedes magma generation and tectonic extension can play a more significant role in crustal 
production (Dick et al., 2003). The source of anomalously high magma supply thus remains 
unclear along ridges with ultraslow-spreading rates adjacent to Jan Mayen Island in the North 
Atlantic (Neumann and Schilling, 1984; Mertz et al., 1991; Haase et al., 1996; Schilling et 
al., 1999; Trønnes et al., 1999; Haase et al., 2003; Mertz et al., 2004; Blichert-Toft et al., 2005; 
Debaille et al., 2009). Here we show that Jan Mayen volcanism is likely the surface expression 
of a small mantle plume, which exerts significant influence on nearby mid-ocean ridge tecto-
nics and volcanism. Progressive dilution of Jan Mayen geochemical signatures with distance 
from the hotspot is observed in lava samples from the immediately adjacent Mohns Ridge, 
and morphological indicators of enhanced magma supply are observed on both the Mohns 
Ridge and the nearby Kolbeinsey Ridge, which additionally locally overlies a highly hete-
rogeneous, eclogite-bearing mantle source. These morphological and geochemical influences 
underscore the importance of heterogeneous mantle sources in modifying melt supply and 
thus the local expression of tectonic boundaries.
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Letter

The normal accretion process along divergent plate boundaries can be notably 
altered in hotspot-ridge interaction settings, where elevated mantle temperature 
anomalies enhance mantle melting, generating unusually thick oceanic crust 
(e.g., Schilling et al., 1985; Schilling, 1991; Gale et al., 2013, 2014). Jan Mayen 
and its immediate environs in the North Atlantic (Fig. 1) include an intraplate, 
volcanically-active island or hotspot (Jan Mayen Island), positioned at the 
northern terminus of a small, rifted microcontinent (Jan Mayen Ridge; Johnson 
and Heezen, 1967; Kodaira et al., 1997; Gaina et al., 2009) and adjacent to two 
second-order ultraslow-spreading (Dick et al., 2003) ridge segments, the Northern 
Kolbeinsey Ridge (NKR) and Southern Mohns Ridge (SMR), and the Jan Mayen 
Fracture Zone, a major fracture zone with ~200 km of transform offset. Although 
different in key ways, broad geochemical similarities between Jan Mayen Island 
and Icelandic lavas have suggested the influence of a mantle plume (either a 
unique Jan Mayen plume or emplaced Icelandic material) on mantle melting 
beneath Jan Mayen Island (Schilling et al., 1999; Trønnes et al., 1999; Debaille 
et al., 2009). The absence of a clear hotspot track has led to conflicting, alter-
nate interpretations for Jan Mayen’s high magma production rate and enriched 
chemistry (Imsland, 1986; Maaløe et al., 1986; Thy et al., 1991): cold edge effects 
near the fracture zone (Mertz et al., 1991; Haase et al., 1996), variably melting 
source heterogeneities (Mertz et al., 1991; Haase et al., 2003; Mertz et al., 2004), 
upwelling along a mantle chemical discontinuity (Blichert-Toft et al., 2005), or 
a locally wet mantle (Haase et al., 2003; Mertz et al., 2004). Jan Mayen thus 
presents a useful case study for 1) exploring the mechanisms by which hotspot 
volcanism can influence ultraslow-spreading ridge morphology, behaviour, and 
volcanism, 2) determining the relationships between hotspot volcanism and 
ambient variations in mantle geochemistry, and 3) exploring the disputed origins 
of local volcanic activity.

For this study, we present comprehensive geochemical analyses (major and 
trace element concentrations and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 
207Pb/204Pb, and 208Pb/204Pb compositions) for a suite of submarine volcanic 
rocks from the NKR, the SMR, and Jan Mayen Island (Tables 1, S-1, S-2, S-3). 
These geochemical results are interpreted in the context of an enhanced geologic 
perspective, thanks to new high-resolution bathymetry of the volcanic and 
tectonic submarine morphology (Fig. 1). All submarine samples were retrieved 
during recent research cruises in combination with new multibeam bathymetry 
(Pedersen et al., 2010; Devey, 2012). Three additional, subaerial alkali basalts from 
Jan Mayen Island are included for literature comparison (Maaløe et al., 1986).

In agreement with previous work (Trønnes et al., 1999; Debaille et al., 2009), 
Jan Mayen Island lavas are “enriched” with relatively high 87Sr/86Sr, 206Pb/204Pb, 
207Pb/204Pb, and 208Pb/204Pb and low εHf and εNd (e.g., 87Sr/86Sr  = 0.703368-
0.703490) (Table 1), and with trace element abundances resembling other ocean 
island basalts (Table S-2, Fig. S-1). While similar, Jan Mayen area lavas exhibit a 
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Figure 1  (a) Multibeam bathymetric map of the NKR, showing the Eggvin Bank and numbered 
dredge locations for samples analysed in this study. (b) Regional bathymetric map showing 
distribution of labelled seafloor features and Jan Mayen Island, with sample locations for this 
study from Jan Mayen Island (red), NKR (colours as in panel a), and SMR (orange). (c) Map 
with highlighted areas showing the proposed zones of underlying mantle melt generation 
and migration (blue: Kolbeinsey-type; purple: Eggvin-type; orange: Mohns-type; and red circle: 
Jan Mayen-type mantle).

distinct geochemical composition from Icelandic lavas (e.g., higher 87Sr/86Sr and 
Pb isotope ratios, lower 143Nd/144Nd and 176Hf/177Hf, normal MORB 3He/4He, 
and distinct 187Os/188Os on Jan Mayen Island; Schilling et al., 1999; Hanan et al., 
2000; Blichert-Toft et al., 2005; Debaille et al., 2009), suggesting an enriched source 
discrete from the Icelandic hotspot source, possibly entraining subcontinental 
lithospheric mantle (SCLM) (Debaille et al., 2009). The submarine samples from 
Jan Mayen Island appear relatively evolved compared to the most magnesian 
subaerial samples of this study (MgO = 5.1-6.45 vs. 10.6-11.1 wt. %; Table S-3), 
but as previously observed, there are no systematic trace element or isotopic 
variations correlating with differentiation, arguing against detectable crustal 
assimilation (Trønnes et al., 1999) (Tables 1, S-2, S-3).

The Mohns Ridge is an ultraslow-spreading ridge (17 mm yr-1 full-sprea-
ding rate; Mosar et al., 2002; Dick et al., 2003) north of Jan Mayen Island with 
relatively thin crust (~4 km; Klingelhofer et al., 2000; Okino et al., 2002; Ljones 
et al., 2004; Kandilarov et al., 2008) and mainly characterised by highly oblique 
spreading expressed as a series of en echelon rift basins (Géli et al., 2012). In 
contrast, its southern segment (the SMR) has an orthogonal spreading direction 
and irregular off-axis crustal morphology, with a shallower ridge axis and thicker 

crust (~10 km; Kandilarov et al., 2012) (Fig. 1). Recent mapping indicates the 
presence of large, partly eroded volcanic structures, often bisected by faulting 
(Pedersen et al., 2010). We interpret these structural and morphological charac-
teristics as indicative of magma supply considerably higher than along the rest 
of the Mohns Ridge, possibly reflecting the influence of a nearby mantle plume 
associated with enhanced melt production.

Table 1  Radiogenic isotope compositions measured by ICP-MS*.

Sample Location** 87Sr/86Sr 176Hf/177Hf 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

Submarine samples:

POS436 242DR-2ba NKR 0.703151(5) 0.283175(5) 0.513006(6) 18.8926 15.5093 38.6157

POS436 246DR-2a NKR 0.702961(6) 0.283255(4) 0.513083(5) 18.4553 15.4547 38.0857

POS436 235DR-1aa NKR 0.703187(5) 0.283177(4) 0.513008(5) 18.8756 15.5177 38.5990

POS436 253DR-E2a NKR 0.703195(7) 0.283175(4) 0.513015(5) 18.8899 15.5211 38.6184

POS436 253DR-6a NKR 0.703203(7) 0.283183(4) 0.513019(5) 18.8881 15.5185 38.6109

POS436 232DR-1a NKR 0.703047(7) 0.283217(4) 0.513044(5) 18.7881 15.5004 38.4908

POS436 209DR-2aa NKR 0.703034(6) 0.283231(4) 0.513051(6) 18.7699 15.5003 38.4689

POS436 222DR-1a NKR 0.703040(7) 0.283217(4) 0.513043(6) 18.8150 15.5047 38.5277

POS436 215DR-1a NKR 0.703047(7) 0.283203(4) 0.513036(4) 18.8538 15.5114 38.5652

SM01-DR-24-14b JM 0.703368(8) - 0.512910(5) 18.8331 15.5057 38.5979

SM01-DR-23-3b JM 0.703456(6) 0.283088(7) 0.512931(5) 18.8494 15.5070 38.6082

SM01-DR-5-5b JM 0.70343(8) 0.283090(4) 0.512914(5) 18.8149 15.5061 38.5865

SM01-DR-60-43b JM 0.703431(8) 0.283083(4) 0.512918(5) 18.8095 15.5051 38.5795

SM01-DR-100-01b SMR 0.703395(8) 0.283233(5) 0.512978(5) 18.7946 15.4979 38.5077

CGB-2011-D17-2aa SMR 0.703339(6) 0.283265(4) 0.512991(6) 18.7206 15.4949 38.4695

SM01-DR70-1a SMR 0.703391(5) 0.283236(4) 0.512979(5) 18.7409 15.4995 38.4923

SM01-DR67-4b SMR 0.703417(8) 0.283196(4) 0.512983(5) 18.8285 15.5012 38.5407

SM01-DR-91-13b SMR - 0.283314(5) - - - -

Subaerial samples (samples from Maaløe et al., 1986):

JM-192a JM 0.703490(7) 0.283083(4) 0.512880(6) 18.7648 15.5167 38.6121

JM-71a JM 0.703454(6) 0.283068(4) 0.512901(5) 18.8186 15.5170 38.6310

JM-84a JM 0.703453(7) 0.283087(4) 0.512903(6) 18.8404 15.5090 38.6229

* Values in parentheses indicate 2s uncertainty for the last digit expressed.
** NKR: Northern Kolbeinsey Ridge; JM: Jan Mayen Island; SMR: Southern Mohns Ridge.
a 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 176Hf/177Hf, and 143Nd/144Nd measured by MC-ICP-MS (Nu Plasma HR) at 
the Ecole Normale Supérieure de Lyon. Strontium isotopes were analysed at the University of Wyoming by MC-
ICP-MS (ThermoFinnigan NeptunePlus). See Supplementary Information for further analytical details.
b Data measured at Bergen Geoanalytical Facility. 87Sr/86Sr measured by thermal ionisation mass spectrometry 
(Finnigan Mat262). 143Nd/144Nd, 177Hf/176Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios measured by MC-ICP-
MS (ThermoFinnigan Neptune). See Supplementary Information for further analytical details.
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Typical Mohns Ridge MORB are characterised by relatively high incom-
patible element contents and enriched radiogenic isotope values (Schilling et al., 
1999; Elkins et al., 2014), but with relatively high 208Pb/204Pb and 207Pb/204Pb for a 
given 206Pb/204Pb, akin to the so-called DUPAL anomaly observed in the southern 
oceans (Blichert-Toft et al., 2005). The lavas are further characterised by unusually 
high εHf  for a given εNd (Blichert-Toft et al., 2005), best explained by ancient 
garnet in the mantle source, perhaps hosted by SCLM. Such a source could have 
originated as delaminated Greenland continental lithosphere during rifting of 
the relatively young Greenland basin. All SMR basaltic glasses analysed here are 
tholeiitic with geochemistry intermediate between typical Mohns Ridge MORB 
and lavas from Jan Mayen Island, readily explained as products of straight-
forward binary mixing between Mohns Ridge-type and Jan Mayen Island-type 
endmember magmas (Figs. 2, 3, S-1, S-2, Table 1).

Unlike the Mohns Ridge, the Kolbeinsey Ridge is overall characterised by 
orthogonal spreading at ultraslow rates (18 mm yr-1; Mosar et al., 2002; Dick et 
al., 2003) and relatively thick ocean crust (7-10 km; Kodaira et al., 1997). The NKR 
segment has a shallower ridge axis and therefore thicker crust than the neigh-
bouring Middle Kolbeinsey Ridge (MKR). While ultraslow ridges are typically 
characterised by thin crust, tectonic spreading, and peridotite exposure, those 
features are not observed in the Jan Mayen region despite ultraslow full-sprea-
ding rates of 17-18 mm yr-1 (Mosar et al., 2002). Recent bathymetric mapping 
reveals that the Eggvin Bank in the centre of the NKR, in addition to being 
anomalously shallow, hosts fresh volcanic deposits indicative of high magma 
supply (e.g., sheet flows vs. monogenetic cones, a nearly subaerial volcanic edifice 
constructed atop the eastern axial flank wall, and fresh popping rocks) compared 
to the ends of the segment (Fig. 1). The large seamount lacks fresh fault scarps, 
suggesting elevated volcanic activity to maintain its height and cover active axial 
faulting. Regional bathymetry (Smith and Sandwell, 1997) demonstrates the 
presence off-axis of shallow seafloor and highly segmented slopes persisting up to 
30 km (~3 Ma) off-axis, further supporting a long-lived source of active volcanism. 
Bathymetry further reveals two parallel axial valleys to the south that both host 
fresh basalt (Fig. 1). This doubling of ridge axes suggests the segment is imma-
ture and can be explained by either active relocation of the segment towards the 
main, more easterly neovolcanic zone, or by simultaneously active, paired axial 
valleys as observed in Iceland. Either scenario suggests that NKR axial position 
is influenced by a long-lived source of enhanced magma supply.

Kolbeinsey Ridge basalts overall have notable depletions in incompatible 
trace elements and long-lived radiogenic isotope signatures, with high (230Th/238U) 
activity ratios, together suggesting high degrees of melting of a depleted garnet 
peridotite source (Elkins et al., 2014). The abrupt change in purported mantle 
composition across the Jan Mayen Fracture Zone has been interpreted to indicate 
a sharp chemical discontinuity, perhaps reflecting a major mantle flow boundary 
(Haase et al., 1996) (Fig. 3). Former work identified more enriched isotopic and 
trace element signatures on the Eggvin Bank and NKR than the MKR, gene-
rally attributed to the influence of the Jan Mayen hotspot (Schilling et al., 1999; 

Figure 2  (a) εNd vs. εHf, (b) εNd vs. 206Pb/204Pb, (c) 207Pb/204Pb vs. εHf, and (d) 207Pb/204Pb vs. 
206Pb/204Pb diagrams for lavas from the Jan Mayen region and Iceland (Sun and Jahn, 1975; 
Zindler et al., 1979; Óskarsson et al., 1982; Hemond et al., 1993; Nowell et al., 1998; Salters 
and White, 1998; Schilling et al., 1999; Chauvel and Hémond, 2000; Kempton et al., 2000; 
Stracke et al., 2003; Blichert-Toft et al., 2005; Elkins et al., 2011; Sims et al., 2013; Elkins et al., 
2014) (Tables 1, S-2). Curves show calculated binary mixing trajectories between hypothesised 
geochemical compositions for Jan Mayen- (red box), Mohns- (yellow), Kolbeinsey- (blue) and 
Eggvin- (green) type melt endmembers, where tickmarks show percentage contributions of a 
pure Jan Mayen- or Eggvin-derived magma to a mixture. The Jan Mayen endmember, based 
on the most extreme enriched measurements for the island (Tables 1, S-2) has εHf = +10.5, 
εNd =  +4.7, 206Pb/204Pb = 18.85, 207Pb/204Pb = 15.517, and Hf, Nd, and Pb concentrations of 6.9, 
38.7, and 3.7 ppm, respectively. The hypothesised Mohns endmember, extrapolated to values 
that best explain available SMR samples as binary mixtures of Jan Mayen-Mohns Ridge lavas, has 
εHf =  +24, εNd = +10.1, 206Pb/204Pb = 17.9, 207Pb/204Pb = 15.41, and Hf, Nd, and Pb concentrations 
of 5.6, 30, and 0.7, ppm, respectively; this composition is reasonable compared to published 
measurements from the Mohns Ridge (Schilling et al., 1983; Schilling et al., 1999; Blichert-Toft 
et al., 2005; Elkins et al., 2014). The Kolbeinsey endmember, based on depleted values from a 
suite of published MKR measurements (Schilling et al., 1983; Blichert-Toft et al., 2005; Elkins 
et al., 2011) and NKR sample POS436 246DR-2, has εHf = +19.2, εNd = +10, 206Pb/204Pb = 18.0, 
207Pb/204Pb = 15.43, and Hf, Nd, and Pb concentrations of 0.5, 3, and 0.3 ppm, respectively; 
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mixtures of Jan Mayen and Kolbeinsey endmembers cannot fully explain NKR lava composi-
tions. The Eggvin-type component was extrapolated to values that best explain NKR basalts as 
mixtures between Kolbeinsey and an unknown enriched component, with εHf = +11, εNd = +5, 
206Pb/204Pb = 18.96, 207Pb/204Pb = 15.528, 208Pb/204Pb = 38.72, and Hf, Nd, and Pb concentra-
tions of 3, 22, and 11 ppm. Note that the high Pb content of the Eggvin-type endmember is 
necessary to generate a sufficiently hyperbolic mixing trajectory to account for NKR basalts.

Haase et al., 2003; Mertz et al., 2004; Blichert-Toft et al., 2005). Likewise, NKR 
aSm-Nd values (where aSm-Nd = (Sm/Nd)sample / (Sm/Nd)source, and (Sm/Nd)source is 
calculated from 143Nd/144Ndsample using a mantle model age of 1.8 Ga; DePaolo, 
1988; Sims et al., 1995; Salters, 1996) are more typical of global MORB (<1.0), 
unlike other Kolbeinsey Ridge basalts with aSm-Nd > 1.0 (Salters, 1996; Elkins 
et al., 2011), supporting a distinct mantle source beneath the NKR. While high 
(230Th/238U) activity ratios have suggested melting of a depleted garnet peridotite 
source for the MKR, NKR lavas have low (231Pa/235U) activity ratios, likely the 
product of rapid melting of garnet-bearing eclogite (Elkins et al., 2011, 2014). We 
note that the basalt from the eastern axial valley resembles other NKR lavas, 
including geochemical indicators of enrichment, while the western axial valley 
basalt more closely resembles MKR basalts and presumably does not sample 
the enriched mantle component beneath the Eggvin Bank (Figs. 2, 3, S-1, S-2).

While the above observations may suggest plume influence on NKR basalt 
production, the composition of the enriched endmember in the NKR/Eggvin 
mantle source differs notably from the Jan Mayen mantle component inferred 
from Jan Mayen Island- and SMR-derived lavas (Fig. 2). For example, the more 
enriched basalts collected from the Eggvin Bank exhibit lower (Sm/Yb)N ratios 
than the Jan Mayen endmember (Table S-2, Figs. 3, S-1), which cannot be explained 
by a lack of residual garnet in the source, since NKR magmas are known to be 
products of melting in the presence of garnet from 230Th/238U > 1 (Elkins et al., 
2011, 2014). Observed NKR trace element patterns thus likely reflect the compo-
sition of a distinct mantle source located beneath the Eggvin Bank. Although not 
as pronounced as DUPAL-type signatures to the north, this Eggvin-type mantle 
source also exhibits slightly elevated 207Pb/204Pb and 208Pb/204Pb ratios for a given 
206Pb/204Pb and higher εHf  for a given εNd (Table 1, Figs. 2, S-2). Moreover, if 
generated by binary mixing, the isotopic compositions of Eggvin Bank basalts 
require a notably Pb-rich Eggvin endmember magma (Fig. 2). In addition to the 
231Pa/235U evidence for eclogite (Elkins et al., 2014), partition coefficients for Pb, 
Si, Al, and Fe in eclogite support an eclogite-rich source contributing magmas 
with the relatively high Pb and SiO2 and low FeO and Al2O3 observed in NKR 
MORB (Haase et al., 2003; Pertermann and Hirschmann, 2003) (Tables S-2, S-3, 
Figs. S-2, S-3, S-4). Such an eclogite-bearing source is supported by correlations 
between Pb and radiogenic isotopes, with higher Pb contents associated with 
the most enriched isotopic signatures for the NKR (Fig. S-4). We thus infer that 
the most likely mantle source for the Eggvin-type signature in NKR basalts is 
an eclogite-rich mantle containing ancient, high-εHf garnet (Blichert-Toft et al., 
2005). Existing models suggest that garnet-bearing veins or blobs of SCLM are 
present in the North Atlantic mantle, likely having originated under Greenland 
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Figure 3  Geochemical indicators vs. along-axis distance for the NKR and SMR, with the 
position of Jan Mayen Island projected westward onto the NKR using a geographic contour 
that runs parallel to the Jan Mayen Fracture Zone. (a) (Sm/Yb)N, sensitive to the presence of 
garnet in, and the trace element makeup of, the source. The variation between Jan Mayen 
Island/SMR and the NKR likely reflects a heterogeneous mantle source. (b) aSm-Nd; because Sm 
is always more compatible than Nd during melting, values less than unity reflect the degree of 
melting of the model source, while values greater than unity (e.g., MKR basalts; Salters, 1996; 
Elkins et al., 2011) require a different source composition and/or younger age than recorded 
by radiogenic isotopes.

prior to basin rifting by delamination (Blichert-Toft et al., 2005); a concentrated 
pocket of such material may plausibly have been trapped beneath the NKR by the 
relocation of the active ridge axis to the Kolbeinsey Ridge from the Aegir Ridge 
at ~25 Ma (Fig. 1). While the more fusible eclogite can generate thickened crust 
without elevated mantle temperatures, the other morphological evidence (large 
near-axis seamounts and paired axial valleys) and extreme nature of the crustal 
thickening would also support the influence of a plume on mantle temperature 
beneath the NKR.

The proximity of a small, discrete mantle plume beneath Jan Mayen Island 
could generate enhanced upwelling and elevated mantle temperatures, producing 
more melt regionally on both the SMR and NKR. The flow of plume-derived 
material would likely be directed northward across the fracture zone, influencing 
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both mantle temperature and basalt composition along the SMR. While a highly 
fusible eclogite-rich source beneath Jan Mayen is a possibility that cannot be defi-
nitively ruled out, the diminishing northward Jan Mayen-type magma signature 
on the Mohns Ridge is more characteristic of a plume-like point source mixing 
with adjacent ridge-derived magmas. Any possible Jan Mayen hotspot track is 
likely confused by the off-axis hotspot location and a local tectonic history of 
axial relocation, possibly ongoing on the NKR, making the presence of a track 
unclear. The more fusable, eclogite-bearing, Eggvin-type mantle beneath the 
NKR could likewise be influenced by the elevated regional temperature anomaly 
caused by a Jan Mayen plume through the long-term generation of excess magma, 
although the NKR does not record direct mixing or addition of Jan Mayen-type 
mantle melts. While we believe this evidence likely favours a small, discrete 
mantle plume, either scenario results in crustal emplacement of large quantities 
of magma, producing highly thickened crust, voluminous sheet flows, and a 
nearly-subaerial (28 m depth), near-axis volcanic seamount. 

Jan Mayen and environs demonstrate the dramatic extent to which magma-
tism generated by heterogeneous mantle, possibly with a plume source, can 
influence the structure and behaviour of ultraslow mid-ocean ridges. Here, 
multiple mantle heterogeneities within a relatively small geographic area have 
significantly modified the accretionary process of two ridge segments, generating 
enhanced magmatic activity, variations in spreading direction, adjusted axial 
locations, and, where mantle flow permits, the direct addition of heterogeneous, 
possibly plume-derived magma. We hence assert that the distinct morphology 
and tectonically-dominated accretionary style typical of ultraslow spreading 
ridges (Dick et al., 2003) is particularly sensitive to even modest increases in 
mantle temperature and magma supply, which cause the ridge to take on growth 
properties more typical of slow- or intermediate-spreading ridges. For compa-
rison, the 17 ºS location on the East Pacific Rise is adjacent to a small hotspot 
but shows little geomorphological impact at fast spreading rates (Mahoney et al., 
1994). This demonstrates that for ultraslow ridges, the control on accretionary 
mechanisms is principally magma supply, which is typically but, importantly, 
not solely controlled by spreading rate.
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Methods

Submarine NKR, SMR, and Jan Mayen Island samples were retrieved by dredging 
or ROV sampling on the R/V Poseidon leg 436 (2012), R/V Håkon Mosby leg SM01 
(2001), and R/V G.O. Sars leg CGB2011 (2011) (Fig. 1, Table 1), accompanying new 
high-resolution multibeam bathymetric mapping efforts for targeted sampling 
of fresh volcanic deposits. Samples were analysed for major and trace element 
concentrations and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, 
and 208Pb/204Pb compositions. Glassy submarine samples were handpicked for 
fresh volcanic glass to avoid visible alteration, palagonite, surface coatings, and 
phenocrysts. Two of the most primitive (high-MgO) subaerial samples from the 
Maaløe et al. (1986) collection of Beerenberg Volcano on Jan Mayen Island and an 
additional more evolved (low-MgO) sample were selected for whole rock analysis 
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to compare with submarine samples; major element concentrations of submarine 
Jan Mayen Island rocks with high crystalline contents were also measured by 
whole rock analysis. All whole rock material was prepared by hand crushing and 
grinding to small rock chips using an agate mortar and pestle.

Subaerial, crystalline rock samples JM-192, JM-71, and JM-84 were 
measured using whole rock analysis of rock chips, following removal of any 
altered rinds or large phenocrysts. Submarine samples SM01-DR-5-5 and SM01-
DR-60-43 contained glassy, fresh groundmass from recent, historic lava flows, 
and were handpicked to remove any visible surface alteration or large phenocrysts. 
All other submarine samples were handpicked for pure, fresh, unaltered glass. To 
remove surface impurities, handpicked samples prepared for trace element and 
isotopic analysis at the University of Wyoming, the Ecole Normale Supérieure 
de Lyon, and Boston University were leached with 0.1 % oxalic acid + 2 % H2O2 
for 15 minutes in an ultrasonic bath, followed by three rinses in ultrapure water, 
and then leached for an additional 15 minutes in an ultrasonic bath with 0.1 % 
HCl + 2 % H2O2 and again rinsed three times. Handpicked samples prepared at 
University of Bergen (Tables 1, S-2) were leached for 10 minutes in 1 % H2O2 in 
an ultrasonic bath, followed by three rinses in ultrapure water and then leached 
briefly in concentrated ultrapure HBr. Whole rock samples were ground to powder 
or small chips using an agate mortar and pestle for whole rock analysis.

Major elements for glassy samples were determined using an Electron 
Probe Microanalyzer JXA-8900 at the University of Maryland NanoCenter 
and the NispLab (Table S-3). For electron probe analysis of major elements, a 
minimum of 15 points were analysed per sample on one to four homogeneous, 
handpicked glass chips. For trace element analysis at Boston University, samples 
were dissolved using a HF-HNO3-HClO4 dissolution procedure and subsequently 
dried and redissolved in weak HNO3 for analysis by ICP-MS. At the University 
of Bergen, glass shards were analysed by LA-ICP-MS with a 120 mm diameter 
beam, pulse frequency of 10 Hz, beam energy of 0.3 mJ/pulse, and total ablation 
time of 90 s. NIST-glass CaO content (determined by electron microprobe) was 
used as a calibrating standard, and W-2 and BCR were analysed as unknowns in 
each sample batch, with accuracies of 2 to 8 % for rare earth elements.

Due to high crystallinity, subaerial samples from Jan Mayen Island were 
analysed for major elements by whole rock analysis of dissolved rock chips, and 
two fresh submarine samples dredged from the island’s flank were analysed in 
the same fashion using glassy groundmass hand-picked to remove large pheno-
crysts. All whole rock chips were then analysed for major elements at Boston 
University by ICP-AES (Table S-3) using methods after Murray et al. (2000). 
Glass chips for NKR samples and a subsuite of SMR samples and the whole 
rock chips from Jan Mayen Island described above were further analysed for a 
full suite of trace element abundances at Boston University (Table S-2) (Murray 
et al., 2000; Scudder et al., 2014; Dunlea et al., 2015). Handpicked glass chips from 
the remaining SMR and Jan Mayen Island samples were analysed for major and 
trace elements in Bergen by laser ablation inductively coupled plasma mass spec-
trometry (LA-ICP-MS) using a New Wave UP213 laser and a Finnigan Element2 
ICP-MS at the University of Bergen (Tables S-2, S-3).

Northern Kolbeinsey Ridge basalt glass chips, a subsuite of SMR (Table S-1) 
basalt glass chips, and subaerial Jan Mayen Island basalt whole rock chips (see 
description above) were analysed for 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 
207Pb/204Pb, and 208Pb/204Pb compositions by multi-collector inductively coupled 
plasma mass spectrometry (MC-ICP-MS) (Nu Plasma 500 HR) at the Ecole 
Normale Supérieure de Lyon, all on the same sample dissolutions (Table 1). Splits 
from these same sample dissolutions were analysed for 87Sr/86Sr at the University 
of Wyoming, also by MC-ICP-MS (ThermoFinnigan™ NeptunePlus) (Table 1). 
Handpicked glass chips from additional SMR and Jan Mayen Island samples 
were analysed for 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, 
and 208Pb/204Pb compositions at the University of Bergen (Table 1); 87Sr/86Sr was 
analysed by thermal ionisation mass spectrometry (TIMS) (Finnigan Mat262) 
and 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb composi-
tions were measured by MC-ICP-MS (ThermoFinniganTM Neptune). Additional 
methods details provided in Supplementary Information.

206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 176Hf/177Hf, and 143Nd/144Nd isotope 
compositions measured by MC-ICP-MS in Lyon were analysed following the 
procedures in Blichert-Toft and Albarède (2009) with the exception that Ln-Spec 
instead of HDEHP columns were used for Nd purification. Hafnium and Nd 
were normalised for instrumental mass bias relative to 179Hf/177Hf = 0.7325 and 
146Nd/144Nd = 0.7219, respectively. 176Hf/177Hf of the JMC-475 Hf standard = 
0.282160 ± 0.000010 (n = 45), and 143Nd/144Nd of the Rennes in-house standard 
= 0.511961 ± 0.000013 (n = 45) (Chauvel and Blichert-Toft, 2001). Pb isotope 
compositions were analysed using Tl doping and sample-standard bracketing 
and the values of Eisele et al. (2003) for NIST 981. External reproducibilities of 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb are 100-200 ppm or 0.01-0.02  %. Hf, 
Nd, and Pb total procedural blanks were <20 pg.

Following partial separation in Lyon from the same sample dissolutions 
used for Hf, Nd, and Pb isotope work, Sr was purified at the University of Wyoming 
using cation-exchange resin in HCl followed by a Sr-Spec column to remove Rb. 
87Sr/86Sr compositions were analysed using a ThermoFinnigan™ NeptunePlus 
MC-ICP-MS instrument with an Apex desolvating nebuliser. Strontium isotopes 
were analysed in static mode, using four Faraday collectors with ratios normalised 
to 86Sr/88Sr = 0.1194 to account for instrumental mass bias. Additional Faraday 
collectors were used to monitor Rb and Kr interferences, which were nearly unde-
tectable at <0.0002 volts for 83Kr and ≤0.0001 volts for 85Rb in all analyses; any 
Kr interferences detected using the 83Kr peak were then corrected using natural 
abundances. Strontium isotope ratios are reported relative to NBS987 87Sr/86Sr = 
0.71024. Total procedural blanks for Sr were <100 pg, and external reproducibility 
of 87Sr/86Sr for BCR-2 and other rock standards is ~ ±0.000016 (2s).

At the University of Bergen Geoanalytical Facility, handpicked glass chips 
were dissolved in concentrated HF + HBr. Lead was extracted using methods 
after Manhes et al. (1978) and Sr, Nd, and Hf after Hamelin et al. (2013). 87Sr/86Sr 
was measured using a Finnigan Mat262 TIMS at the University of Bergen and 
143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb composi-
tions were measured using a ThermoFinnigan Neptune MC-ICP-MS. Repeated 
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measurements of international standard solutions during analyses yielded 
87Sr/86Sr = 0.710238 ± 8 (n = 4, 2s) for the NBS987 Sr standard, 143Nd/144Nd = 
0.511845 ± 6 (n = 13, 2s) for the LaJolla Nd standard, 177Hf/176Hf = 0.282148±3 
(n = 15, 2s) for the JMC-475 Hf standard, and 206Pb/204Pb = 16.9351 ± 13 (n = 8, 
2s), 207Pb/204Pb = 15.4889 ± 14 (n = 8, 2s), and 208Pb/204Pb = 36.6879 ± 37 (n = 
8, 2s) for the NBS981 Pb standard. Instrumental mass fractionation of Pb was 
corrected for using the Tl doping and sample-standard bracketing technique. 
Data in Table 1 are reported relative to the following standard values: 87Sr/86Sr 
= 0.71024, 143Nd/144Nd = 0.511856, 177Hf/176Hf = 0.282157, 206Pb/204Pb = 16.9371, 
207Pb/204Pb = 15.4913, and 208Pb/204Pb = 36.7213.

Supplementary Figures

Figure S-1   (a) Chondrite-normalised (McDonough and Sun, 1995) REE concentrations and (b) 
N-MORB (Hofmann, 1988) normalised trace element concentrations for samples from this study 
(Table S-2). NKR basalts have elevated Pb and HREE compared to Jan Mayen Island and the 
MKR, indicating that they cannot be simple mixtures of Kolbeinsey-type and Jan Mayen-type 
magmas. High (230Th/238U) ratios measured in NKR lavas also require the presence of garnet 
in the melt source, indicating that the trace element compositions in Eggvin Bank basalts is 
principally controlled by mantle source composition.

Figure S-2  εHf vs. 206Pb/204Pb for the Jan Mayen region, with symbols, mixing trajectories, 
and references as in Figure 2.

Figure S-3  (La/Sm)N vs. FeO* for basalt samples from the Kolbeinsey Ridge and the NKR, 
using data from Haase et al. (2003) and C. Devey, M. Wieneke, and K. Haase (unpub. data). 
Linear best-fit regression for Kolbeinsey Ridge samples suggests a slight positive relationship 
between FeO* and (La/Sm)N, likely controlled by degree of melting. Basalt rocks from the 
NKR are restricted to generally higher (La/Sm)N and lower FeO* values than the rest of the 
Kolbeinsey Ridge, best explained by an eclogite-bearing, incompatible element-enriched 
mantle source beneath the Eggvin Bank.
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Figure S-4  (a) 87Sr/86Sr vs. Pb, and (b) εNd vs. Pb. for the Jan Mayen region, with symbols 
and references as in Figure 2. The data support lithologically and isotopically heterogeneous 
mantle source compositions for the Jan Mayen region and corroborate the existence of an 
Eggvin Bank end-member distinct from Jan Mayen mantle.

Supplementary Tables

Table S-1  Location information for new submarine samples analysed in this study.

Sample number* Location Expeditionb Year
Latitude (ºN) Longitude (ºW) Depth (m)

Start Stop Start Stop Start Stop

POS436 242DR-2b NKR R/V Poseidon Leg 436 2012 70.7600 70.7650 13.5504 13.5448 1559 1436

POS436 246DR-2 NKR R/V Poseidon Leg 436 2012 70.7894 70.7947 13.7535 13.7540 1714 1630

POS436 235DR-1a NKR R/V Poseidon Leg 436 2012 70.9128 70.9124 13.1241 13.1125 485 381

POS436 253DR-E2 NKR R/V Poseidon Leg 436 2012 70.9490 70.9474 13.0348 13.0377 207 175

POS436 253DR-6 NKR R/V Poseidon Leg 436 2012 70.9490 70.9474 13.0348 13.0377 207 175

POS436 232DR-1 NKR R/V Poseidon Leg 436 2012 71.0599 71.0566 12.9523 12.9398 622 578

POS436 209DR-2a NKR R/V Poseidon Leg 436 2012 71.3134 71.3159 12.7027 12.6945 1199 1205

POS436 222DR-1 NKR R/V Poseidon Leg 436 2012 71.3470 71.3472 12.6433 12.6293 1139 1137

POS436 215DR-1 NKR R/V Poseidon Leg 436 2012 71.4766 71.4760 12.3938 12.4062 1819 1703

SM01-DR-24-14a JM R/V Håkon Mosby, SM01 2001 - 71.1287 - 7.8082 - 738

SM01-DR-23-3 JM R/V Håkon Mosby, SM01 2001 - 71.1022 - 7.7913 - 697

SM01-DR-5-5 JM R/V Håkon Mosby, SM01 2001 - 71.1192 - 7.9187 - 47

SM01-DR-60-43 JM R/V Håkon Mosby, SM01 2001 - 71.1645 - 7.9880 - 222

SM01-DR-100-01 SMR R/V Håkon Mosby, SM01 2001 70.9855 - 6.4003 - 2493

CGB-2011-D17-2a SMR R/V G.O. Sars, CGB2011 2011 71.2617 71.2613 5.8430 5.8397 - 847

SM01-DR70-1 SMR R/V Håkon Mosby, SM01 2001 - 71.2382 - 6.1102 - 953

SM01-DR67-4 SMR R/V Håkon Mosby, SM01 2001 - 71.2188 - 6.1713 - 806

SM01-DR-91-13 SMR R/V Håkon Mosby, SM01 2001 - 71.2715 - 5.8468 - 732

* All samples collected by dredge, except ROV dive sample CGB-2011-D17-2a. For SM01 cruise, only end locations 
for dredges were recorded.
a SM01 and CGB-2011 sample depths are calculated from GEBCO global bathymetry (IOC, IHO, BODC, 2003).
b R/V Poseidon sample information available in Earthchem/IEDA database (Elkins, 2015).
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Table S-2 Trace element abundance measured by ICP-MS.

Sample Location Li Sc V Cr Co Ni Cu Zn Rb Sr Zr Y Mo Ba La

Submarine samples:

POS436 242DR-2ba NKR 4.9 47.8 274.7 404.1 45.6 127.1 88.0 79.2 7.5 145.5 54.8 24.7 0.5 99.0 8.0

POS436 246DR-2a NKR 4.5 46.9 275.3 246.0 49.4 85.7 110.2 72.4 1.6 56.4 36.5 23.9 0.2 - 2.3

POS436 235DR-1aa NKR 7.7 43.7 424.4 18.1 43.8 20.1 49.9 104.2 12.0 150.0 118.6 39.6 0.9 172.2 15.4

POS436 253DR-E2a NKR 6.8 36.9 409.0 14.6 42.9 174.6 49.1 105.8 11.6 140.4 128.2 34.6 1.0 175.7 15.1

POS436 253DR-6a NKR 6.6 30.2 402.3 19.4 43.2 38.8 73.8 160.4 11.4 138.1 132.4 32.6 1.2 173.2 13.7

POS436 232DR-1a NKR 4.9 47.9 280.4 376.3 46.2 106.3 92.3 73.8 4.2 99.2 46.8 25.5 0.4 52.7 5.2

POS436 209DR-2aa NKR 6.7 52.9 329.2 173.9 47.6 55.7 77.4 89.9 6.4 103.2 52.4 33.2 0.4 66.4 5.8

POS436 222DR-1a NKR 5.5 47.4 302.1 226.0 47.0 74.3 88.4 83.2 4.8 110.3 50.6 27.7 0.5 72.3 6.0

POS436 222DR-1 
replicatea

NKR 5.4 49.2 311.1 233.2 48.5 74.4 91.6 87.3 5.2 114.6 52.7 28.6 0.5 75.1 6.2

POS436 215DR-1a NKR 5.8 38.3 332.2 87.6 47.4 51.6 76.0 98.7 6.6 100.1 61.8 25.6 0.6 103.4 7.2

SM01-DR-24-14b JM - - - 17.0 - 31.8 - - 76.8 764.4 285.5 31.3 - 1192.4 71.6

SM01-DR-23-3b JM - - - 3.7 - - - - 90.5 876.6 404.6 39.6 - 1727.2 94.9

SM01-DR-5-5b JM - - - 39.2 - 23.2 - - 54.6 556.9 231.9 26.8 - 832.2 48.6

SM01-DR-60-43b JM - - - 20.0 - 22.8 - - 69.7 674.7 261.5 28.7 - 1051.6 56.5

SM01-DR-100-01b SMR - - - 7.6 - 29.8 - - 29.4 315.9 173.2 32.8 - 454.7 0.0

CGB-2011-D17-2aa SMR 6.3 31.4 367.8 23.4 41.8 28.3 54.8 103.8 24.5 326.2 162.1 30.8 2.0 453.7 28.8

SM01-DR70-1a SMR 4.0 18.3 361.5 24.4 42.2 33.5 63.9 95.3 20.9 316.8 165.1 19.3 2.1 423.8 23.2

SM01-DR67-4a SMR 7.0 25.4 423.8 26.9 44.4 22.3 55.5 107.6 39.7 403.5 227.6 30.4 - 639.1 45.0

SM01-DR-91-13b SMR - - - 9.0 - 15.5 - - 21.0 244.6 135.1 32.5 - 319.3 20.3

Subaerial samples (samples from Maaløe et al., 1986):

JM-192a JM 5.1 40.4 284.7 671.1 49.6 167.5 34.0 87.1 33.0 820.8 279.2 30.5 1.8 620.1 40.5

JM-71a JM 4.8 35.3 364.3 533.0 51.9 188.1 100.0 81.4 41.6 650.7 287.5 25.3 2.3 814.7 44.1

JM-84a JM 7.7 27.1 347.7 55.9 33.9 38.6 51.9 102.8 101.8 1156.9 457.5 46.0 4.0 1546.7 90.8

Rock standard:

BHVO-2 4.4 29.1 315.3 327.6 48.4 122.9 132.2 104.0 8.0 365.8 158.7 24.5 - 128.8 14.6

Sample Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Hf Pb U Th

Submarine samples:

POS436 242DR-2ba 16.3 2.1 8.9 2.3 0.8 3.0 0.5 3.4 0.7 2.3 2.5 0.4 1.5 0.7 0.21 0.76

POS436 246DR-2a 6.1 0.9 4.6 1.6 0.6 2.5 0.5 3.1 0.7 2.2 2.4 0.4 1.1 0.4 0.04 -

POS436 235DR-1aa 33.0 4.2 17.8 4.5 1.5 5.4 0.9 5.9 1.3 4.0 4.1 0.6 3.1 1.3 0.44 1.60

POS436 253DR-E2a 34.4 4.1 17.4 4.3 1.4 5.0 0.9 5.4 1.1 3.6 3.7 0.6 3.4 1.4 0.49 1.54

POS436 253DR-6a 32.4 3.7 15.3 3.7 1.2 4.4 0.8 4.7 1.0 3.2 3.3 0.5 3.3 1.7 0.48 1.49

POS436 232DR-1a 11.0 1.5 7.0 2.1 0.8 2.9 0.5 3.5 0.8 2.4 2.6 0.4 1.4 0.6 0.13 0.37

POS436 209DR-2aa 12.3 1.7 8.1 2.6 0.9 3.7 0.7 4.4 1.0 3.1 3.4 0.5 1.6 0.7 0.14 0.46

POS436 222DR-1a 12.7 1.7 7.8 2.3 0.9 3.3 0.6 3.9 0.8 2.7 2.8 0.4 1.5 0.7 0.16 0.50

POS436 222DR-1 
replicatea

12.9 1.8 8.1 2.4 0.9 3.3 0.6 3.9 0.9 2.7 2.9 0.4 1.5 0.7 0.16 0.54

POS436 215DR-1a 15.4 2.0 8.5 2.3 0.8 3.1 0.6 3.7 0.8 2.5 2.7 0.4 1.7 0.9 0.21 0.62

SM01-DR-24-14b 144.2 16.2 60.1 10.2 3.1 7.8 1.0 6.1 1.1 3.0 2.6 0.4 6.5 - 2.31 8.56

SM01-DR-23-3b 184.6 20.9 75.4 12.3 3.8 9.6 1.3 7.4 1.4 3.9 3.4 0.5 9.1 - 2.75 10.39

SM01-DR-5-5b 100.9 11.9 45.3 8.0 2.4 6.8 0.9 5.2 1.0 2.6 2.1 0.3 5.7 - 1.46 5.97

SM01-DR-60-43b 123.2 14.0 52.7 9.0 2.8 7.3 1.0 5.5 1.0 2.7 2.3 0.3 6.2 - 1.91 7.34

SM01-DR-100-01b 65.1 8.2 31.4 6.2 2.0 5.6 0.8 5.4 1.1 3.0 3.0 0.4 4.0 - 0.95 0.95

CGB-2011-D17-2aa 60.9 7.1 27.7 5.7 1.8 5.6 0.9 5.0 1.0 3.0 3.0 0.5 4.0 1.7 0.93 3.44

SM01-DR70-1a 58.0 5.6 21.3 3.9 1.2 3.4 0.5 2.9 0.6 1.7 1.6 0.2 4.0 1.9 0.99 2.46

SM01-DR67-4a 85.5 10.7 39.8 7.6 2.2 6.7 1.0 5.9 1.1 3.2 2.9 0.4 5.3 2.4 4.86 1.29

SM01-DR-91-13b 45.3 5.7 23.6 5.5 1.8 5.5 0.8 5.6 1.2 3.3 3.3 0.5 3.6 - 0.64 2.44

Subaerial samples:

JM-192a 78.8 10.1 39.5 7.7 2.5 6.8 1.0 5.1 0.9 2.7 2.3 0.3 6.9 2.2 0.81 4.45

JM-71a 80.1 10.1 37.9 6.9 2.1 5.7 0.8 4.2 0.8 2.2 2.0 0.3 6.9 2.5 1.14 5.08

JM-84a 154.6 20.8 76.2 13.1 3.9 10.6 1.5 7.7 1.4 4.1 3.7 0.5 10.4 3.7 2.06 12.22

Rock standard:

BHVO-2 36.1 5.4 23.8 6.0 2.0 5.9 0.9 5.2 0.9 2.4 1.9 0.3 4.3 1.6 1.23 0.41

a Trace elements measured by ICP-MS (VG Plasma Quad ExCell) at Boston University, with 1-2 % standard 
deviations.
b Trace elements measured by LA-ICP-MS (Thermo-Finnigan Element2) at the University of Bergen, with 2-5 % 
standard deviations.
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Table S-3  Major element composition results.

Sample Location SiO2 Al2O3 TiO2 CaO MnO MgO FeO Fe2O3 Na2O  K2O   Cr2O3 P2O5 Cl   Total  

Submarine samples:

POS436 242DR-2b NKR 50.69(8) 15.25(4) 1.04(2) 13.02(4) - 8.37(5) 8.66(5) - 1.70(1) 0.267(4) 0.09(1) 0.144(7) 0.032(2) 99.4(1)

POS436 246DR-2 NKR 50.73(9) 15.02(4) 0.85(3) 13.64(6) - 8.95(3) 9.16(7) - 1.57(1) 0.074(3) 0.07(1) 0.094(7) 0.012(1) 100.3(1)

POS436 235DR-1a NKR 52.27(9) 13.06(4) 2.25(5) 8.68(5) - 4.54(3) 14.60(6) - 2.76(2) 0.551(4) 0.031(9) 0.22(1) 0.141(3) 99.3(2)

POS436 253DR-E2 NKR 52.5(2) 11.9(9) 2.0(1) 9.8(6) - 6.2(1.3) 13.6(2) - 2.5(3) 0.45(5) 0.03(1) 0.20(2) 0.14(2) 99.5(2)

POS436 253DR-6 NKR 52.70(8) 12.8(5) 2.06(7) 9.1(2) - 5.4(7) 13.66(7) - 2.7(1) 0.50(3) 0.034(9) 0.22(1) 0.149(8) 99.5(2)

POS436 232DR-1 NKR 50.90(7) 14.83(3) 1.00(3) 13.16(5) - 8.30(3) 9.30(6) - 1.777(9) 0.192(2) 0.07(1) 0.074(5) 0.028(1) 99.8(1)

POS436 209DR-2a NKR 52.2(1) 13.03(4) 2.28(3) 8.68(3) - 4.57(2) 14.70(7) - 2.75(2) 0.568(2) 0.05(1) 0.233(8) 0.143(2) 99.4(2)

POS436 222DR-1 NKR 51.4(1) 14.58(4) 1.10(2) 12.44(5) - 7.56(7) 10.22(5) - 1.95(3) 0.230(3) 0.06(1) 0.095(7) 0.026(1) 99.9(1)

POS436 215DR-1 NKR 52.24(7) 14.24(4) 1.25(3) 11.09(6) - 6.64(3) 11.50(7) - 2.088(8) 0.309(3) 0.027(7) 0.121(8) 0.038(2) 99.7(1)

SM01-DR-24-14 JM 47.8(1) 15.11(5) 4.42(3) 8.94(6) - 3.70(2) 12.20(6) - 3.26(2) 3.10(5) 0.009(5) 0.75(1) 0.118(3) 99.6(2)

SM01-DR-23-3 JM 56.8(1) 17.14(4) 2.14(4) 4.56(4) - 2.19(1) 6.11(4) - 3.7(2) 3.93(2) 0.020(6) 0.453(8) 0.191(3) 97.5(2)

SM01-DR-5-5a JM 48.01 15.1908 3.29 10.31 0.20 6.45 - 12.1 2.98 2.48 - 0.59 0.06 101.7

SM01-DR-60-43a JM 48.17 16.1320 3.51 10.41 0.20 5.05 - 12.8 3.02 2.67 - 0.62 0.12 102.7

CGB-2011-D17-2a SMR 51.4(2) 14.57(7) 2.44(2) 9.77(6) - 5.22(2) 11.57(7) - 2.90(1) 1.003(8) 0.015(7) 0.367(9) 0.152(2) 99.6(3)

SM01-DR70-1 SMR 50.37(7) 14.74(4) 2.37(3) 10.17(5) - 5.62(2) 10.5(1) - 2.75(2) 0.984(6) 0.026(9) 0.354(8) 0.124(2) 98.2(2)

SM01-DR67-4 SMR 51.18(9) 14.35(8) 2.86(3) 9.08(4) - 4.61(3) 11.06(9) - 2.85(4) 1.40(3) 0.029(9) 0.476(9) 0.109(3) 98.2(2)

SM01-DR-91-13 SMR 52.1(2) 14.17(4) 2.34(3) 9.8(2) - 5.2(1) 12.0(1) - 2.5(2) 0.75(1) 0.025(7) 0.298(8) 0.069(2) 99.4(2)

Subaerial samples (samples from Maaløe et al., 1986):

JM-192a JM 47.39 12.92 2.52 12.45 0.17 11.13 - 11.1 2.20 1.13 - 0.43 - 101.4

JM-71a JM 46.41 12.84 2.48 12.11 0.17 10.61 - 11.0 2.16 1.15 - 0.42 - 99.3

JM-84a JM 47.65 16.52 3.26 9.88 0.19 5.02 - 11.1 3.59 2.05 - 0.68 - 100.0

Rock standard:

BHVO-2 48.80 13.30 2.74 11.20 0.16 7.17 - 12.1 2.11 0.50 - 0.27 - 98.4

* Major element concentrations of glass chips measured by EPMA methods unless otherwise indicated. EPMA 
results report uncertainties expressed in parentheses as 1s standard error for the last digit reported. Values shown 
are mean values of at least 15 analysed points. measured using a 20 keV beam. All Fe measured as FeO.
a Whole rock chips analysed for major element concentrations by ICP-ES (Jobin-Yovn Ultima-C) with standard 
deviations of 1-2 %. All Fe measured as Fe2O3.
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