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Calcium stable isotopes place Devonian conodonts  
as first level consumers

V. Balter1*, J.E. Martin1, T. Tacail2, G. Suan1, S. Renaud3, C. Girard4
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Conodont animals are an extinct group of jawless vertebrates whose hard parts, 
also known as conodont elements, represent the earliest evidence of a mineralised 
skeleton in the vertebrate lineage. Conodont elements are interpreted as parts of 
a feeding apparatus, which together with the presence of eyes and microwear 
patterns, support the controversial hypothesis that conodont animals were 
macrophagous predators and/or scavengers. Here, we explore the trophic position 
of five conodont genera (Palmatolepis, Polygnathus, Ancyrodella, Ancyrognathus and 
Icriodus) from five contemporary Late Devonian sites distributed worldwide 
(France, Morocco, Vietnam and Australia) by means of calcium (Ca) stable isotope 
compositions. The seawater Ca isotope composition was calibrated using contem-
porary Late Devonian brachiopod isotopic values. By comparison with extant 
marine trophic chain composed of cartilaginous fish, conodont Ca isotope 
compositions are indicative of a zooplanktivore - primary piscivore niche, with 

no genus-specific trophic pattern. The question of active predation or scavenging cannot be resolved definitively but our 
results strongly suggest that Late Devonian conodonts were first level consumers. 
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Introduction

Until the publication of the discovery of the first specimen of 
the conodont animal in 1983 with conodont elements in situ 
forming a feeding apparatus, the nature and function of the 
conodont elements was one of palaeontology’s great mysteries 
(Briggs et al., 1983). Since then, several other specimens have 
shown similar schemes for this feeding apparatus, in which the 
anterior elements form a structure allowing them to trap food 
that is further processed by the posterior elements (Purnell 
and Donoghue, 1997). Today, despite the advancement of 
synchrotron microtomography that allows reconstructing 
virtual movements of the elements forming the feeding appa-
ratus (Goudemand et al., 2011), the dietary behaviour of cono-
donts remains an open debate but recently Shirley et al. (2018) 
suggested a predatory or scavenger mode of life. Conodonts 
possessed sclerotic eye capsule and extrinsic eye musculature 
(Gabbott et al., 1995; Purnell, 1995a), consistent with cono-
donts having pattern vision and an active predatory lifestyle. 
Lastly, microwear patterns were found on conodont elements, 
which constituted the first direct evidence that they functioned 
as teeth (Purnell, 1995b). 

In the present work, which is a pilot study, we use for the 
first time calcium (Ca) stable isotopes to infer the feeding habit 

of conodont animals. The first studies showing that trophic 
levels of animals, including fish, could be inferred from the 
Ca isotope compositions of their shell or inner skeleton lay 
back in the 2000’s (Skulan et al., 1997; Skulan and DePaolo, 
1999; Clementz et al., 2003; DePaolo, 2004). These results 
were recently confirmed on modern and fossil elasmobranchs 
(Martin et al., 2015), a subclass of cartilaginous fish, including 
the sharks, rays and skates, and sawfish. Some authors have 
already measured the Ca isotope composition of conodonts 
but with the aim to reconstruct variations of the seawater 
composition (Hinojosa et al. 2012; Jost et al. 2014; Le Houedec 
et al. 2017). Here, the Late Devonian period, particularly the 
Frasnian-Famennian boundary (F/F), was chosen because it is 
accompanied by important variations in the shape of conodont 
elements, suggestive of changes in the feeding behaviour of 
several genera (Balter et al., 2008; Girard and Renaud, 2008). 
The Material and Method sections are described in the Supple-
mentary Information.

Results

All values presented in this work are expressed as δ44/42Ca and 
defined as δ44/42Ca = ((44Ca/42Casample) / (44Ca/42CaSRM915a) – 1) 
* 1000. All measured samples were plotted as δ43/42Ca against 



 
Geochem. Persp. Let. (2019) 10, 36-39 | doi: 10.7185/geochemlet.1912 37

Geochemical Perspectives Letters Letter

δ44/42Ca and fall on a line with a slope of 0.557 close to the 
theoretical 0.507 slope predicted by the exponential approx-
imation of mass dependent fractionation (Tacail et al., 2014; 
Fig. S-2). Quality control assessment is given in Table S-2, 
and Ca isotope values of conodonts measured in this study 
(Table S-3; Fig. 1)  range from -0.38 ‰ to 0.22 ‰, with an 
average value of -0.10 ± 0.22 ‰ (±2 s.d., n = 80). The average 
δ44/42Ca value is -0.10 ± 0.20 ‰ (±2 s.d., n = 39) at Col des 
Tribes, -0.12 ± 0.28 ‰ (±2 s.d., n = 39) at Coumiac, -0.03 ± 
0.12 ‰ (±2 s.d., n = 5) at M’rirt, -0.14 ± 0.04 ‰ (±2 s.d., n = 2) 
at Xom Nha and -0.05 ‰ at Sprite Ridge (Table S-3). Compar-
ison between conodonts at Coumiac and Col des Tribes, the 
two most abundant sites, reveals no significant difference of 
the δ44/42Ca value (Student’s t-test, p = 0.373). Comparisons 
between conodonts grouped by genus reveal no taxonomic 
difference (Table S-4). The brachiopod yielded a δ44/42Ca value 
of 0.13 ‰ (Table S-1), which represents one of the highest 
values of the dataset. 

Discussion

The present paper focuses on the trophic position of conodont 
animals based on their Ca isotope compositions, but these 
could have been affected by diagenetic processes. Discussion 
on the effects of diagenesis is developed in the Supplementary 
Information. We conclude, in the absence of any evidence of 
Ca isotope compositions being diagenetically reworked, that 
the measured δ44/42Ca values of conodonts are biogenic. 

The present paper focuses on the trophic position of 
conodont animals based on their Ca isotope composition, but 
accurate comparisons with modern analogues first necessitate 
calibrating the Ca isotopic values of the conodont elements 
relative to that of the contemporaneous seawater. Based on 
the existing Ca isotopic fractionation factor between modern 
brachiopods (br) Terebratalia and seawater (sw), abr-sw = 
0.99915 (Gussone et al., 2005), the δ44/42Ca value of end-De-
vonian seawater (δ44/42Casw) was estimated at 0.55 ‰, i.e. ~0.4 
‰ lower than that of modern oceans (Blättler et al. 2012). With 
an age estimated slightly younger than the Devonian-Carbon-
iferous boundary of 360 Ma, this value falls in the range, but 

in the lower limit, of the reconstructed Phanerozoic seawater 
Ca isotope composition of Farkaš et al. (2007; Fig. S-3). We 
can now calculate the Ca isotopic offset between seawater and 
conodonts, which is equal to 0.65 ± 0.25 ‰, (± s.d., n = 80). 
Conodonts are made up of hydroxylapatite (hap), which is 
more or less fluorinated, but it is the same mineral phase 
as that of elasmobranch teeth. This allows comparing the 
average Ca isotopic offset between Devonian seawater and 
conodonts with that of modern seawater and extant elasmo-
branch tooth enameloid (Martin et al. 2015), which is anno-
tated Δ44/42Casw-hap (Fig. 2). Using a modern seawater δ44/42Casw 
value of 0.92 ‰, an offset of ~0.65 ‰ is observed nowadays 
between seawater and the zooplanktivore and primary pisci-
vores group, which are characterised by average Δ44/42Casw-hap 
values of 0.56 ± 0.27 ‰ (±2 s.d., n = 5) and 0.86 ± 0.08 ‰ 
(±2 s.d., n = 6), respectively (Fig. 2). To fully encompass the 
δ44/42Casw variability at that time, which is well described by 
the study of Farkaš et al. (2007), we can also calculate the 
Δ44/42Casw-hap with the upper limit of the contemporaneous 
δ44/42Casw value, i.e. ~0.67 ‰. Even with this higher value, the 
calculated Δ44/42Casw-hap offset shows that conodonts are still 
in the the zooplanktivore - primary piscivores group (Fig. 2). 
The observation that conodonts fall as first level consumers is 
in accordance with the macrophagous hypothesis (i.e. feeding 
on relatively large particles of food), but is at odds with the 
view that conodont animals had a purely predatory life-
style, which would have implied a δ44/42Ca value of conodont 
elements around 1 ‰. Scavenging of fish cannot be ruled out, 
but must have involved small fish above all, otherwise the 
δ44/42Ca values would have been those of predators.

Another argument in favour of a basal trophic position 
for conodonts, is that modern piscivore elasmobranchs exhibit 
a much tighter grouping of the δ44/42Ca values than modern 
zooplanktivore elasmobranchs and conodonts (Figs. 1 and 2). 
The range of δ44/42Ca values for a given trophic level of pisci-
vore elasmobranchs never exceeds 0.1 ‰ while it is higher 
than 0.2 ‰ for modern zooplanktivore elasmobranchs and 
conodonts. No definitive explanation can be put forward from 
the state of the results, but a reasonable hypothesis could be 
that animals at the bottom of the trophic chain are more 
likely to sample local isotopic heterogeneities. This variability 

Figure 1  Ca isotope compositions of conodonts (δ44/42Ca) relative to SRM915a (‰) measured in the study. 
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is subsequently contracted at higher trophic level probably 
thanks to a biopurification process such as in the case of the 
Sr/Ca and Ba/Ca ratios (Peek and Clementz, 2012). 

The present results suggest that no significant difference 
in trophic level may have existed among conodonts, because 
genera exhibit indistinguishable δ44/42Ca values (Table S-2). 
This overall similarity suggests that competition must have 
existed between some genera occupying similar trophic levels 
at the same time, i.e. between Palmatolepis and Polygnathus for 
instance. It is noteworthy that Ancyrodella is the only genus 
analysed in the study that disappeared at the F/F boundary, 
questioning the possibility that a distinct ecological trait would 
have triggered the extinction of this conodont genus. 

Using a similar Δ44/42Casw-hap for conodont elements 
and modern elasmobranchs to retrieve the trophic position 
of conodont animals implies similar vital effects (i.e. isotope 
fractionation due to biological processes) in both groups. This 
approach is however probably simplistic. In fish, Ca is taken 
up along three pathways, (1) directly from the water via the 
gills, which contain a lot of ion-transporting cells or chloride 
cells (also known as ionocytes), but also through the intestine 
from (2) drinking water and (3) food (Flik and Verbost, 1993). 
No evidence for gills has ever been reported in preserved 
specimens of conodont animals (Aldridge and Purnell, 1996), 
which would suggest distinct Δ44/42Casw-hap values between 
conodont animals and elasmobranchs. Total intestinal absorp-
tion of calcium in marine fish represents around 30 % of the 
total calcium intake (Björnsson and Nilsson, 1985; Sundell and 
Björnsson, 1988). To our knowledge, relative proportions of 
drinking water and food in fish have never been determined, 
but the isotopic results of Martin et al. (2015) in elasmobranchs 
demonstrate that food must make a sizable proportion, other-
wise no trophic effect would have been observed. Indeed, the 
most likely explanation to account for the depletion of Ca 
heavy isotopes up trophic chains, being marine or terrestrial, 
is that preys are wholly ingested along with their skeleton 

which is depleted in heavy Ca isotopes. If the three types 
of Ca uptake described above are characterised by different 
isotope fractionation intensity, and their relative proportions 
vary between fish groups, this should in principle result in 
a different Δ44/42Casw-hap fractionation. Analysis of dietary 
relevant trace elements for marine organisms, such as Sr/Ca 
and Ba/Ca ratios (Balter and Lécuyer, 2004, 2010; Le Houedec 
et al., 2013; Peek and Clementz, 2012) would corroborate the 
present results, but we question whether this would be feasible 
in light of the difference of vital effects discussed above, and 
of potential diagenetic effects. Further analysis of Ca isotopes 
in conodont assemblages will document the diversity of their 
ecological niches within Palaeozoic oceanic trophic chains.
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Figure 2  Ca isotopic offset between seawater and hap of modern elasmobranchs compared to that of conodonts (Δ44/42Casw-hap) 
measured in the study. Modern elasmobranch data are from Martin et al. (2015). The Δ44/42Casw-hap offset is calculated with two 
δ44/42Casw values, 0.55 ‰ (diagonal lines) and 0.67 ‰ (diagonal cross hatch) corresponding to the range given by Farkaš et al. (2007; 
Fig. S-3). Boxplots delimit 5, 25, 50, 75 and 95 % percentiles. Depending on the δ44/42Casw value, statistics show that conodonts and 
zooplanktivores have similar δ44/42Ca values. Under the null hypothesis that there is no difference in the distribution of two groups of 
δ44/42Ca values, the p value of Student’s t-tests provides the smallest level of significance at which null hypothesis would be rejected 
(NS, non-significant p value; *p = 0.01–0.05; **p = 0.001–0.01; and ***p < 0.001).
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