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Oxygen Fugacity Control on Redox Freezing vs. Wehrlitisation during Interaction with 

Carbonated Melts 

The low proportion of wehrlite amongst garnet peridotites and inclusion-bearing diamonds is striking (Fig. S-

1a,b) when compared against the proportion of wehrlite in spinel peridotite xenoliths in this study (Table S-3). This 

can be explained by the effect of oxygen fugacity (ƒO2) on the stabilisation of carbonate/carbonated melt vs. 

graphite/diamond. Garnet and diamond are only stable at high pressures ≥~2 and ~3.5 GPa, depending on composition 

and the geothermal gradient to which their host rock equilibrated. The vast majority of garnet peridotite investigated to 

date have ƒO2 relative to the Fayalite-Magnetite-Quartz (FMQ) buffer ≤ -1 (e.g., Woodland and Koch, 2003; Yaxley 

et al., 2017). However, solid carbonate or pure carbonatite melt are only stable at FMQ ≥ -1.5 to -1, depending on 

pressure (Stagno et al., 2013). Carbonated silicate melts, which are stable to lower ƒO2 precipitate graphite/diamond 

according to the reaction: 

4 FeO + CO2 = 2 Fe2O3 + C (Eq. S-1) 

which has been referred to as “redox freezing” (Rohrbach and Schmidt, 2011). Since ƒO2 increases with decreasing 

pressure in the mantle lithosphere (e.g., Woodland and Koch, 2003), pure carbonatite or carbonated silicate melt may 

be stable in the spinel peridotite facies. This may explain the higher abundances of wehrlite xenoliths at locations 
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affected by extension. 

 

Compositional Effects of Wehrlitisation and the Role of Lithosphere Thickness 

The presence of a thick lithospheric lid, typically in intact cratons, impedes decompression melting, allowing no 

or only small-volume melts to be stabilised as a function of temperature, composition and ƒO2 (e.g., Aulbach, 2019). 

In contrast, thinner lithospheres allow longer melting columns to be established, with stronger dilution of the melt 

with silicate components (e.g., Stamm and Schmidt, 2017). Consequently, disrupted cratons, the deep roots of which 

are thermally and compositionally strongly overprinted, and metacratons, the deep roots of which have been lost 

altogether, are typically associated with magmatism involving higher-volume melt (e.g., Aulbach, 2019). 

Microstructures associated with garnet breakdown are described for some wehrlite-bearing xenolith suites (reviewed 

below), which suggests decompression to the spinel stability field in the context of extension and lithosphere thinning. 

Dilution with silicate components during sustained decompression melting entails higher contents of “basaltic” 

components in the melt, such as Al2O3 and FeO. Clinopyroxene in wehrlites from Greenland are characterised by low 

TiO2 and FeO, but strongly elevated CaO/Al2O3 commonly ascribed to interaction with a carbonatite melt (Aulbach et 

al., 2017), whereas those from Tok have high FeO and Al2O3 and in part TiO2 contents, which are explained by 

reaction with silicate melt (Ionov et al., 2005a) (Fig. S-2). Wehrlite-bearing xenolith suites from other localities show 

intermediate compositions (East African Rift, West Eifel Volcanic Field), which have been ascribed to carbonatites 

(Rudnick et al., 1993) and alkaline mafic melts (Shaw et al., 2018), respectively. For the purpose of inferring the 

metasomatic agent based on reported clinopyroxene composition (Fig. S-2), we only consider garnet-free peridotites 

because the presence of garnet affects Al2O3 and Y-HREE partitioning into clinopyroxene, which we use to infer the 

metasomatic agent involved in wehrlitisation. This garnet effect is illustrated for trace elements in Figure S-3. 

Interaction of mantle peridotite with carbonatite and silicate melt leads to a distinct minor- and trace-element 

relationships in the clinopyroxene: LREE tend to be strongly enriched over HREE in carbonatite-metasomatised 

peridotite while Ti is not enriched along with MREE, whereas the opposite results from interaction with silicate melt 

(e.g., Yaxley et al., 1991; Rudnick et al., 1993; Coltorti et al., 1999) (Fig. S-3). Elevated La/Gd, Ce/Yb and Pr and 

low Ti/Eu and Y result from interaction with carbonatite and/or with a melt that has percolated garnet-bearing mantle 

(Fig. S-3). Prior depletion related to partial melt extraction during stabilisation of the lithosphere is evident in low 

absolute Pr abundances. Thus, abundances of strongly incompatible elements decrease and of less incompatible 

elements increase with increasing volume of the metasomatic melt, and this signature is imposed on the 

metasomatised mantle volume. These systematics are also observed in clinopyroxene from peridotites other than 

wehrlite-group peridotites because cryptic metasomatism affects the incompatible element budget without changes in 

major element content and mineralogy (Dawson, 1984). In addition to this first-order effect of melt volume, the nature 

of the wall-rock with which the melt has interacted en route to the site of wehrlitisation strongly affects the 

compositional signature. For example, a kimberlite-like melt that extensively reacted with garnet-bearing mantle 

becomes increasingly Y- and HREE-poor and incompatible element-enriched (Aulbach et al., 2013). When garnet-

bearing mantle is absent, such melts have higher Y and La/Gd closer to the primitive mantle (Fig. S-3). Due to effects 

of lithosphere thickness, there is no single major- or trace-element characteristic associated with wehrlitisation. 

  

Selection Criteria, and Assignation to Wehrlite-group Peridotites 

Localities were chosen (1) that are considered representative with respect to tectonic settings (on- and off-craton, 

rift and basin), (2) for which the necessary data have been published that allow calculation of the CO2 released during 

wehrlitisation (mineral modal abundances, clinopyroxene major-element compositions). Additional studies on 

wehrlite-bearing xenolith suites are available, but some are compositionally unequilibrated, precluding the use of 

average compositions or determination of mineral modes (e.g., Eastern Australia: Yaxley et al., 1991, 1998; Eger 

Graben: Loges et al., 2019; Hoggar Swell: Kaczmarek et al., 2016). Others are garnet-bearing (e.g., Kimberley; 

Rehfeldt et al., 2008), which complicates the interpretation of the metasomatic signatures as outlined in the previous 

section. Moreover, as ≤ 1% of garnets from the garnet and diamond-stable lithosphere are wehrlitic (Fig. S-2), they are 

not further considered here.  

The wehrlites under consideration formed as a result of mantle metasomatism rather than accumulation from 

silica-undersaturated melt, such as those reported from the Wyoming Craton (Downes et al., 2004), and sometimes 

both types are present in a xenolith suite (e.g., in the West Eifel Volcanic Field: Zinngrebe and Foley, 1995; East 
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African Rift: Davies and Lloyd, 1989). These two possibilities can be distinguished based on texture (sieved-textured 

clinopyroxene, absence of cumulate microstructures, textures showing replacement of orthopyroxene by 

clinopyroxene) and chemical composition (Na2O in clinopyroxene >0.8 wt%, olivine Mg# >0.84; incompatible-

element enrichment) (Lin et al., 2020).  

A common classification scheme for ultramafic rocks is that by Streckeisen (1976), where peridotites with >40% 

olivine and <5% orthopyroxene are classified as wehrlites, whereas harzburgites with <5% clinopyroxene are 

produced by melt extraction from lherzolite. Melting reactions for spinel peridotite almost invariably indicate that 

clinopyroxene and orthopyroxene are consumed at a clinopyroxene/orthopyroxene ratio >1 (Walter, 2014). This 

produces olivine up to pressures of ~1.7 GPa, above which orthopyroxene may be produced, with estimates for 

clinopyroxene modes in the primitive mantle from 17 to 20% (Walter, 2014). Therefore, in melt residues, 

orthopyroxene/clinopyroxene ratios should be >1, whereas ratios <1 and clinopyroxene modes ≥20% may reflect 

wehrlitisation. Thus, clinopyroxene-rich, orthopyroxene-poor xenolith varieties that are classified as lherzolites 

according to Streckeisen (1976) were plausibly affected by the wehrlitisation process. In some xenolith suites, reaction 

dunites showing evidence for recent orthopyroxene-breakdown have major- and trace-element characteristics similar 

to wehrlites (e.g., Mg# < olivine in primitive mantle) (e.g., North Atlantic Craton in SW Greenland; Aulbach et al., 

2017). Such dunites are distinct from refractory melt extraction residues. They may form in channels preceded by 

reactive porous flow, as suggested for Fe-rich wehrlites (Raffone et al., 2009), and they are here regarded as the (end) 

products of wehrlitisation under open-system conditions. As defined in the main text, wehrlite-group peridotites 

encompass Fe-rich “reaction” dunites, and orthopyroxene-poor lherzolites and harzburgites in addition to wehrlites.  

 

Wehrlite-bearing Xenolith Suites and their Tectonic Setting 

 
East African Rift (EAR), Tanzanian craton (disrupted) 

Development of the EAR is associated with the Oligocene arrival of the Afar plume that caused widespread 

lithosphere thinning (Furman et al., 2016). The EAR stretches for some 6,000 km from north to south (Chorowicz, 

2005). Samples from the Pleistocene Olmani and Labait cinder cones at and near the Tanzanian craton margin in the 

EAR comprise a total of 32 garnet-free peridotite xenoliths (Jones et al., 1983; Rudnick et al., 1993, 1994; Lee and 

Rudnick, 1999). 78 and 30%, respectively, of the garnet-free peridotite samples at these localities are wehrlites and 

reaction dunites (i.e. wehrlite-group peridotites; Table S-3). The latter show increased FeO, but inconspicuous Al2O3, 

CaO and TiO2. Garnet-bearing peridotites also occur at Labait. Unusually low Al2O3 and high Ca/Al in clinopyroxene, 

the occurrence of monazite and apatite in some peridotites, as well as elevated Zr/Hf in peridotites from Olmani have 

been ascribed to carbonatite metasomatism (Rudnick et al., 1993). Spinel peridotites from Labait, located at ~70 to 

130 km depths record ƒO2 of FMQ-0.5 to FMQ+0.4, i.e. they are oxidising relative to the Kaapvaal or Siberian craton 

at similar depth (Zhang et al., 2017). A pre-entrainment enrichment event is recognised based on Li elemental and 

isotope systematics (Aulbach and Rudnick, 2009). Mid-lithospheric discontinuities related to melt metasomatism are 

detected at 60 to 100 km depth in the western craton (Wölbern et al., 2012). The lithosphere-asthenosphere boundary 

(LAB) in the craton is at 150 to 200 km depth (Weeraratne et al., 2003). 

 

Tok, Aldan Shield, Siberian craton (disrupted) 

Peridotite xenoliths from the Quaternary Tok volcanic field in the Aldan Shield at the SE Siberian craton margin 

were investigated by Ionov et al. (2005a,b, 2006). They comprise refractory, metasomatised lherzolites and wehrlites 

with elevated Ca, Fe and Ti contents (Fig. S-2), which have been ascribed to interaction with silica-undersaturated, 

alkali-rich silicate melt (Ionov et al., 2005a). 21% of 48 xenoliths are wehrlites and orthopyroxene-poor lherzolites 

(Table S-1). The metasomatic agent ultimately formed from an underplated and fractionated basic melt, whereby 

carbonate-rich derivatives caused the strongest enrichments (Ionov et al., 2006). Oxygen fugacities have not been 

reported for this mantle section. The Aldan shield was in an extensional regime in the early Cretaceous, with 

emplacement of alkaline rocks linked to the nearby Transbaikalian rift (Ivanov et al., 2018). The Baikal rift, with a 

total of 2,000 km en echelon rift depressions (Tiberi et al., 2003), records initial Late Cretaceous extension and 

increased activity in the Late Miocene to Early Pliocene, associated with subduction of the Pacific plate (Jolivet et al., 

2009). The associated lithospheric disruption resulted in reduced depth to the LAB (~140-190 km; Artemieva, 2006) 

compared to the intact Siberian craton (200 to 250 km; Priestley and Debayle, 2003).  
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North Atlantic Craton in SW Greenland (GNAC) (disrupted) 

Forty-two metasomatised peridotite xenoliths from the Mesozoic Pyramidefjeld and Midternaes kimberlite 

comprise garnet-free lherzolites, harzburgites and reaction dunites from 100 to 170 km depth, and texturally 

equilibrated reaction dunites and olivine-rich phlogopite-bearing wehrlites from 90 to 110 km depth (Aulbach et al., 

2017) (Table S-1). Based on microstructural evidence for garnet break-down, the metasomatic overprint may be linked 

to the latest, Mesozoic, rifting event, which was preceded by multiple failed rifting episodes and accompanied by 

partial destruction of the lithospheric mantle (Tappe et al., 2012). The intense metasomatism is proposed to have been 

oxidising based on the less compatible behaviour of V in wehrlites compared to other peridotites (Aulbach et al., 

2017). The high olivine modes also in the wehrlites (>80%) suggest an open-system process that precludes calculation 

of CO2 fluxes through the lithosphere. The 20 km depth interval at 90 to 110 km appears to be nearly completely 

converted to wehrlite and related rocks (only one of 17 samples is lherzolite). Wehrlitic clinopyroxenes are 

characterised by very high CaO/Al2O3 (Fig. S-2), whereas trace elements in part show the influence of the garnet-

bearing deeper lithosphere (Figs. S-3) (Aulbach et al., 2017). Wehrlites and related rocks spatially overlap a 

seismically detected discontinuity with a negative phase (Kumar et al., 2005). Garnet peridotites with equilibration 

pressures of up to 5.5 GPa (Nielsen et al., 2008) indicate a minimum depth to the LAB of ~170 km, and a depth of 

~210 km is seismically determined (Artemieva, 2019). 

 

Tan Lu Fault Belt (TLFB), NE China (including decratonised North China Craton) 

The TLFB experienced sinistral strike-slip in the earliest Cretaceous, followed by a brief period of compression 

and a long period of extension in the Early Cretaceous, related to subduction, slab roll-back and back-arc extension of 

the Palaeo-Pacific plate (Zhu et al., 2018). Its total length and width are 5,000 × 800 to 1,000 km (Xu et al., 1987). 

Numerous well-studied mantle xenolith suites comprising a high proportion of wehrlites were entrained during Late 

Cretaceous (Liaoyuan) to Cenozoic (Beiyan, Liaoyuan, Nushan, Shanwang, Yitong) alkaline magmatism (Table S-1). 

The wehrlites formed by interaction with silica-undersaturated CO2-H2O-bearing melts, based also on the presence, or 

evidence for the former presence, of amphibole (Lin et al., 2020, and references therein). Signatures of wehrlitisation 

along the fault vary. Based on CaO-Al2O3-FeO relationships observed in clinopyroxene (Fig. S-2) 15 of 60 samples 

are inferred to have reacted with a carbonatite, nine with a carbonated silicate melt and the majority (n = 36) with a 

silica-undersaturated silicate melt (Table S-3). The proportion of wehrlites at each locality varies from none at Nushan 

to 75% at Liaoyuan (36 ± 30 1). Peridotites along the TLFB record oxygen fugacities of FMQ-2 to FMQ+0.8 at 

pressures of 1 to 2 GPa (Lin et al., 2020, and references therein). Regional oxidation and hydration, via influx of fluids 

sourced from the Palaeo-Pacific plate, may have remobilised CO2 stored in the lithosphere by lowering the peridotite 

solidus (Geng et al., 2019). Development of the TLFB temporally overlaps the Mesozoic loss of the diamondiferous 

mantle root beneath the eastern North China craton (NCC) (Zhu et al., 2018). Decratonization of the eastern NCC has 

been linked to seismic velocity reductions at 80 to 120 depth in the intact western NCC, which are interpreted as weak 

zones that were present also beneath the eastern NCC before the Mesozoic decratonisation (Chen et al., 2014).  

 

Middle Atlas, Morocco, NW Africa (reactivated Pan-African basement) 

Late Pliocene to Quarternary alkaline volcanism (alkali basalts, basanites, nephelinites) in the Pan-African 

basement of the Middle Atlas is associated with the Trans-Moroccan fault system and entrained a diverse xenolith 

suite with variable amphibole contents (Raffone et al., 2009). This suite, which records ƒO2 of FMQ-0.1 to FMQ+1.8, 

comprises ~24% wehrlites that formed through interaction with alkaline melts (Fe-wehrlites) and subordinately 

carbonatite or highly evolved melts (Mg-wehrlites) (Raffone et al., 2009) (Table S-1). One wehrlite and two 

clinopyroxene-rich lherzolites with clinopyroxene/orthopyroxene ratios of 1.7 (43%) out of seven peridotite xenoliths 

from the Azrou-Timahdite region are reported in Chanouan et al. (2017), confirming a high proportion of mantle 

affected by silica-undersaturated melt-metasomatism. Metasomatism is thought to have occurred in the Late 

Cretaceous or Eocene during tectonic reactivation (Raffone et al., 2009; Wittig et al., 2010). Reaction patches with 

secondary clinopyroxene and olivine, ascribed to interaction with asthenospheric alkali silicate melts, are reported for 

spinel lherzolites entrained in basalts some 1,500 km southeast, in Gharyan, Libya (Beccaluva et al., 2008). These 

authors suggest that the Cenozoic volcanism in NW Africa reflects lithosphere rejuvenation and rifting within the Pan-

African (or older) basement in reaction to the collision of the African and European plates.  

 



 

 

 

                                       Geochem. Persp. Let. (2020) 15, 30-34 | doi: 10.7185/geochemlet.2031                                        SI-5  

 

Hoggar Swell, Algeria, NW Africa (reactivated Pan-African basement) 

Some 1,000 km to the SSE of the Middle Atlas, in the Hoggar Swell, xenoliths from Neogene to Quarternary 

basanites and nephelinites show evidence for metasomatism by highly alkaline silicate melts to carbonate melts 

derived from the asthenosphere or rejuvenated lithosphere (Dautria et al., 1992; Beccaluva et al., 2007; Kourim et al., 

2014; Kaczmarek et al., 2016). Kourim et al. (2014) report petrographic data for 28 peridotite xenoliths from the 

Tahalgha District, of which 7 are wehrlites (5 amphibole-bearing) (25%). Of 22 texturally heterogeneous samples 

from In Teria (Kaczmarek et al., 2016), two are wehrlites and one is an olivine clinopyroxenite, as grouped together 

by the authors (14%) (Table S-1). There is evidence for the re-equilibration of spinel lherzolites from garnet-bearing 

mantle domains, which testifies to decompression (Beccaluva et al., 2007). Rare garnet peridotites reported from other 

localities are interpreted as the relics of an original thicker lithosphere (Kaczmarek et al., 2016). The Hoggar Swell 

adjoins the Saharan “metacraton” (500,000 km2), which is transected by multiple megafaults and has a lithosphere 

thickness of ~100 to 150 km, compared to the adjacent West African craton with up to 250 km thickness (Liégeois et 

al., 2003; Abdelsalam et al., 2011). The intervening decratonised lithosphere underlying the Pan-African Swell, with a 

diameter of ~1,000 km (Liégeois et al., 2005), is similarly vast. 

 

West Eifel Volcanic Field (WEVF), Germany (off-craton) 

The <1 Myr WEVF is located between the Upper and Lower Rhine Graben (part of the European Cenozoic Rift 

System (ECRS), with a total length of ~1,100 km; Ziegler and Dèzes, 2005). It belongs to the Central European 

Volcanic Province (Trieloff and Altherr, 2007). The underlying mantle is heterogeneous, with an abundance of 

wehrlites and orthopyroxene-poor harzburgites (Table S-1). Micaceous hornblendite veins in composite xenoliths 

attest to the action of hydrous melts before entrainment, whereas strongly LREE-enriched clinopyroxenes in the vein-

hosting peridotite require earlier metasomatism (Witt-Eickschen et al., 1998). Wehrlite and orthopyroxene-poor 

harzburgites (n = 4; 12%), of which one adjacent to a hornblendite vein, are described amongst 33 xenoliths from 

Dreiser Weiher, Meerfelder Maar and other localities, including two samples from the East Eifel (Witt-Eikschen et al., 

1998; 2003; Witt-Eickschen and O’Neill, 2005). Zinngrebe and Foley (1995) describe a suite of xenoliths from Gees 

with an abundance of wehrlites and clinopyroxene-dunites (n = 13; 68%) relative to other peridotites (n = 6). 

Abundant glass and unequilibrated textures preclude modal estimates. Twenty spinel peridotites from the 

Rockeskyllerkopf comprise 55% wehrlites and reaction dunites with abundant phlogopite and minor amphibole (not 

counting phlogopite-clinopyroxene veins), which were metasomatised by a silica-undersaturated alkaline melt before 

Quaternary magmatism (Shaw et al., 2018). Witt-Eikschen and O’Neill (2005) obtain FMQ-0.2 ± 0.5 based on 

mineral equilibria. Diffusion modelling indicates that metasomatism occurred within <1 Myr of entrainment (Shaw et 

al., 2018). Noble gas isotope systematics in mantle xenoliths from the WEVF and Pannonian Basin suggest that CO2-

rich fluids were trapped during mantle metasomatism from lithospheric and plume-derived sources (Trieloff and 

Altherr, 2007). Regional lithospheric thickness ranges from 50 to 120 km, after reworking of an originally thicker 

Variscan root (Ziegler and Dèzes, 2005). The ECRS was activated in the Late Eocene, by compression resulting from 

Alpine Pyrenean collision zones (Dèzes et al., 2004). 

 

Pannonian Basin, Hungary (off-craton) 

The Pannonian Basin, wedged between the Alpine, Dinaride and Carpathian orogenic belts, experienced Early 

Miocene passive rifting with the formation of an extensional back-arc basin, followed by Late Miocene asthenospheric 

upwelling and active thinning in the central basin (Szabó et al., 2004). Mantle xenoliths entrained in Neogene alkali 

basalts provide evidence for the reaction of the lithospheric mantle with carbonated melts. This includes direct 

observations of CO2-bearing glass pockets in a wehrlite-bearing suite dominated by lherzolite and harzburgite, part of 

which show evidence for orthopyroxene break-down (Créon et al., 2017). Modal abundances are not reported. 

Furthermore, CO2-rich fluid inclusions with negative crystal shapes in clinopyroxene occur in lherzolites and 

harzburgites described by Berkesi et al.  (2012). Two of nine xenoliths (22%) in their study are olivine-rich (>81.7% 

olivine) and orthopyroxene-poor (≤11.1 % orthopyroxene), and are assigned here to the wehrlite-group peridotites. 

Abundant wehrlite xenoliths (24% of 63 samples) entrained from ~1.2 to 1.6 GPa are found in the central part of the 

Nógrád-Gömör Volcanic Field in the northern Pannonian Basin (Patkó et al., 2013, 2020; Liptai et al., 2017) (Table 

S-1). Wehrlitisation occurred via interaction with a silicate melt similar to the host basalt, leading to increased Fe, Ti, 

Ca and Al contents and formation of amphibole (Patkó et al., 2020). Lherzolites record ƒO2 of FMQ-0.8 ± 0.7 (Patkó 

et al., 2019). Of 22 samples entrained in Pliocene basalt from Balaton, some 200 km southwest (Ntaflos et al., 2017), 

one clinopyroxene-rich dunite and one orthopyroxene-poor lherzolite (9%) appear to have interacted with silica-
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undersaturated melt. In the eastern basin, refertilisation by Carpathian-Pannonian-type subduction-related silicic melts 

preceded an alkaline event (Faccini et al., 2020), making it difficult to disentangle the effects of the latter, and this 

locality is therefore not considered here. Garnet breakdown products observed in some mantle xenoliths (Szabó et al., 

2004) suggest extension-related decompression of originally thicker lithosphere. The depth of the LAB is estimated at 

70 to 100 km (Alasonati Tasárova et al., 2016).  

 

Southeastern Australia (off-craton) 

Wehrlite xenoliths from SE Australia are compositionally unequilibrated (e.g., Yaxley et al. 1991, 1998), 

precluding their use to estimate CO2 flux described in the next section. Nevertheless, a more detailed description is 

provided here because the wehrlitisation reaction involving carbonatite was originally described in xenoliths from 

Victoria in southeastern Australia (Green and Wallace, 1988). Late Cretaceous to Holocene intraplate basaltic 

volcanism was widespread in SE Australia, and has been linked to the breakup of Gondwana and rifting of the 

Australian plate, followed by edge-driven convection that facilitated decompression melting (Oostingh et al., 2016). 

The volcanics were emplaced into the Lachlan and Delamerian Fold Belts, which are crossed by a series of north-

south-trending faults (Oostingh et al., 2016), but a continent-scale rift or basin are absent. The faults currently provide 

pathways for predominantly mantle-derived CO2 in SE Australian gas fields (Karolyte et al., 2019). This is sampled in 

CO2 springs, which are abundant in the Central Victorian Highlands, and in gas wells in the Otway Basin to the south 

(Karolyte et al., 2019). The mantle CO2 has been related to Pliocene to Recent basalts of the Newer Volcanic Province 

(Cartwright et al., 2002), in which wehrlite-bearing xenolith suites occur. 

 

CO2 Liberation during Wehrlitisation: Modelling and Rationale 

For the purpose of modelling the mass of CO2 liberated during wehrlitisation, we consider only garnet-free and 

spinel peridotites, which sample the shallow mantle lithosphere where the decarbonation reaction takes place (Wallace 

and Green, 1988). Individual xenoliths with key characteristics are listed in Table S-1, key median compositions are 

shown in Table S-3. Based on the decarbonation reaction (main text), we calculate the mass of enstatite required to 

generate the additional diopside formed due to wehrlitisation (i.e. the difference between median clinopyroxene modes 

in wehrlite-group and “other peridotites”, weighted by median diopside component). No adjustment is made for modal 

abundances reported as weight vs. volume fractions, but for rocks dominated by mantle olivine and pyroxenes with 

similar densities (see, e.g., Lee, 2003), the effect is minor (e.g., 10.1 wt% clinopyroxene correspond to 10.0 vol.%) 

relative to uncertainties in the CO2 degassing modelling. According to the reaction, the molar abundance of CO2 

liberated corresponds to ½ that of enstatite. This is then converted to mass of CO2 liberated per 100 kg of wehrlitised 

peridotite and finally weighted by the proportion of wehrlite-group peridotites to calculate the mass of CO2 liberated 

per 100 kg of peridotite in the lithosphere column. This result is independent of the CO2 content in the metasomatic 

agent. For increasingly SiO2-rich and correspondingly CO2-poor liquids (corresponding to increasing melt fractions) 

higher volumes of melt, hence melt-rock ratios, are required to convert orthopyroxene to clinopyroxene. The likely 

metasomatic agent is inferred from the combined FeO and CaO/Al2O3 characteristics of wehrlites, which is evaluated 

on a suite-by-suite basis (Fig. S-2). As an example, for the TLFB, wehrlites with CaO/Al2O3 >6 and FeO <3.5 wt% are 

assigned to the carbonatite-metasomatised suite, those with CaO/Al2O3 ≤6 and FeO ≥ 3.5 wt% to the silicate melt-

metasomatised suite, and the remainder to the carbonated silicate melt-metasomatised suite.  

To calculate the total mass of CO2 liberated, it is necessary to estimate the area and depth interval of lithosphere 

that was affected. Pressures for spinel peridotites are difficult to estimate accurately. We here conservatively assume 

that a 10 km lithosphere depth interval has been converted to wehrlite. Furthermore, we assume that xenolith localities 

sampling a portion of a rift system, continental-scale fault system or basin are representative of the entire system. 

Areal estimates are available for the Hoggar Swell (~785,000 km2; Liégeois et al., 2005), the Pannonian Basin 

(133,000 km2) and the TLFB (4,500,000 km2; Xu et al., 1987, assuming a median width of 900 km). Brune et al. 

(2017) suggest, as a minimum, that rifts are 50 km wide. We use double this estimate because small-volume melt 

magmatism occurs on the shoulders of currently active rifts, such as the EAR, whereas this type of magmatism has 

been superseded by higher-volume basaltic melts in the rift itself (Foley and Fischer, 2017). For the 3250 km long 

Eastern Rift (Hunt et al., 2017), this yields an area of 325,000 km2, for the 2000 km long greater Baikal and 

Transbaikal rifted region 200,000 km2 and for the 1100 km long ECRS (Ziegler and Dèzes, 2005) 110,000 km2. Based 

on Figure 1 in Liégeois et al. (2005), the entire length and width of the area encompassing the Middle Atlas and 
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Gharyan in NW Africa are estimated at 2000 × 200 km, respectively. 

To estimate the carbon flux, the duration of CO2 liberation must be known. For the TLFB, Zhu et al. (2018) 

suggest a major extensional period in the Early Cretaceous following compression in the earliest Cretaceous and 

followed again by compression before the end of the Early Cretaceous, which is here taken to correspond to ca. 30 Ma. 

Although xenolith-bearing basalts along the TLFB are mainly Cenozoic, abundant wehrlites in the Late Cretaceous 

Liaoyuan basalts suggest a temporal link of wehrlitisation to main rift activity. Miocene passive to active rifting in the 

Pannonian Basin (Szabó et al., 2004) translates to some 20 Ma of activity. Foley and Fischer (2017) estimate a 40 Ma 

lifespan for continental rifts, which is applied to the EAR. Activation of the ECRS in the Late Eocene (Dèzes et al., 

2004) may imply some 40 Ma of activity until today. Taking increased activity in the Late Miocene to Early Pliocene 

in the greater Baikal and Transbaikal rifted region (Jolivet et al., 2009), we estimate a duration of 10 Ma. Based on 

isotopic compositions of xenoliths from the Hoggar Swell, metasomatism has been estimated to have occurred no 

earlier than 40 Ma prior to eruption. This timespan is adopted here for the Hoggar Swell and also the Middle Atlas, 

where magmatism and pre-entrainment metasomatic evolution has been linked to rifting of the Pan-African basement 

(Raffone et al., 2009).  
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Supplementary Tables 
 
Table S-1 Rock types, clinopyroxene modes and compositions for wehrlite-bearing xenolith suites from various localities, and 

clinopyroxene associated with carbonatitic high-density fluids in diamond (Excel file available for download from the online 

version of the article at http://www.geochemicalperspectivesletters.org/article2031). 

 

Table S-2 List and salient compositions (wt. %) of high-density fluids in diamond and of experimentally produced liquids (Excel 

file available for download from the online version of the article at http://www.geochemicalperspectivesletters.org/article2031). 

 

Table S-3 List and salient median compositions of clinopyroxene in wehrlite-bearing xenolith suites. 

 

Locality/lithology n % wehr (1) cpx mode % FeOtotal wt. % CaO/Al2O3 Di mol 

Labait and Olmani, Tanzanian Craton margin (disrupted), East African Rift  

Wehrlite-group 14 54 (34) 14 3.9 15.3 0.80 

Other peridotites 18  3 2.7 9.2 0.76 
       

Tok, Siberian Craton margin (disrupted), Aldan Shield    

Wehrlite-group 10 21 (20) 16 3.6 3.8 0.67 

Other peridotites 37  5 2.7 4.1 0.68 
       

Pyramidefjeld and Midternaes, North Atlantic Craton (NAC, disrupted) in SW Greenland  

Wehrlite-group 9 na na 2.5 83.1 0.87 

Other peridotites 15 na na 3.1 9.5 0.78 
       

Tan Lu Fault Belt, NE China (including decratonised North China Craton)  

Wehrlite - type 1 15 

36 (30) 

20 2.7 12.2 0.81 

Wehrlite - type 2 9 25 4.9 9.2 0.78 

Wehrlite - type 3 36 23 3.9 3.3 0.71 

Other peridotites 156  11 2.8 3.1 0.69 
       

Middle Atlas, Morocco, rifted Pan-African basement    

Wehrlite-group 7 34 (8) 24 3.6 4.3 0.70 

Other peridotites 23  9 3.3 3.5 0.69 
       

Hoggar Swell, Algeria, rifted Pan-African basement    

Wehrlite-group 7 16 (9) 18 4.9 3.3 0.66 

Other peridotites 21  12 3.5 3.3 0.70 
       

West Eifel Volcanic Field, Shoulder Rhine Graben, European Cenozoic Rift System (off-craton) 

Wehrlite-group 15 45 (29) 18 3.1 7.3 0.78 

Other peridotites 38  5 2.7 4.4 0.75 
       

Nógrád- Gömör+Bakony-Balaton, Pannonian Basin, Cenozoic European Basin System (off-craton)  

Wehrlite-group 19 18 (8) 21 4.0 4.1 0.70 

Other peridotites 76  8 2.8 3.8 0.71 
       
n number of samples (Table S-1), % wehr (1) average percentage of wehrlite-group peridotites in multiple 
xenolith suites and one standard deviation; average standard deviation from all other estimates is used for Tok, 
where wehrlite percentage is available from only one locality; cpx mode clinopyroxene modal abundance, Di mole 
diopside mole fraction in clinopyroxene; wehrlite-group includes wehrlite, orthopyroxene-poor lherzolite and 
harzburgite and reaction dunite, other peridotites includes harzburgites and lherzolites; type refers to wehrlitising 
agent as defined in Table 1; individual samples with references in Table S-1, further details in Supplementary 
Information. 
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Supplementary Figures 

 

 

 

 

 

Figure S-1 (a) Wehrlitic garnet (red stars) and garnet in other peridotites (crosses) in >950 cratonic peridotite 

xenoliths (Boyd, 1974; Ehrenberg, 1982; Mitchell, 1984; Danchin and Boyd, 1976; Sobolev et al., 1984; Hervig et al., 

1986; Winterburn et al., 1990; Viljoen, 1994; Franz et al., 1996; Boyd et al., 1997; Stachel et al., 1998; Kopylova et 

al., 1999; MacKenzie and Canil, 1999; Schmidberger and Francis, 2001; Hearn, 2004; Kopylova and Caro, 2004; 

Menzies et al., 2004; Grégoire et al., 2005; Westerlund et al., 2006; Aulbach et al., 2007; Simon et al., 2007; 

Creighton et al., 2008, 2010; Hin et al., 2009; Ionov et al., 2010; Ivanic et al., 2012), using the classification scheme 

of Grütter et al. (2004). (b) Parageneses of inclusions in diamond (Stachel and Harris, 2008).  
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Figure S-2 Major-element relationships in clinopyroxene (cpx) from garnet-free xenolith suites (Table S-1) 

including wehrlite-group peridotites and other peridotites, as well as clinopyroxene occurring with diamond-hosted 

high-density fluids (HDF) (a-c); clinopyroxene or high-Ca pyroxene produced in experiments with variable amounts 

of CO2 ± H2O (d-f). These relationships are used to illustrate varied effects of wehrlitisation depending on the nature 

of the metasomatic melt (silicate melt vs. carbonatite). For clarity, not all xenolith suites used in this study are shown. 

Depletion refers to melt extraction from peridotite. References: Tan Lu Fault Belt (TLFB): Xu et al. (1996, 1997, 

1998), Zheng et al. (1998), Xu and Bodinier (2004), Hao et al. (2006, 2016), Yang et al. (2008), Liu et al. (2010), Xia 

et al. (2010), Xiao et al. (2010, 2013), Zhou et al. (2010), Lu et al. (2012), Wang et al. (2014), Lin et al. (2020); 

Aldan Shield in Siberia: Ionov et al. (2005a,b); North Atlantic craton in Greenland: Aulbach et al. (2017); 

clinopyroxene associated with HDF: Klein-BenDavid et al. (2009), Weiss et al. (2009, 2011, 2013, 2014), Weiss and 

Goldstein (2018). Experimental studies: Salters and Longhi (1999: open inverted triangles), Klemme et al. (1995: 

green triangles), Dasgupta et al. (2007: red stars, 2009: green inverted triangles), Girnis et al. (2013: open stars). 

Filled symbols denote wehrlite-group peridotites, open symbols denote lherzolites and harzburgites. 
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Figure S-3 (a-c) Trace-element relationships of clinopyroxene (cpx) in selected wehrlite-bearing peridotite 

xenolith suites reflecting processes and metasomatic agents as indicated in the panels, plus clinopyroxene associated 

with high-density fluids (HDFs) in diamond. References as in Figure S-2, Primitive Mantle PM of McDonough and 

Sun (1995). 
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Liégeois, J.P., Benhallou, A., Azzouni-Sekkal, A., Yahiaoui, R., Bonin, B. (2005) The Hoggar swell and volcanism: reactivation 

of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. In: Foulger, G.R., 

Natland, J.H., Presnall, D.C., and Anderson, D.L. Eds.), Plates Plumes and Paradigms. Geological Society of America 

Special Paper, 379-400. 

Liégeois, J.P., Latouche, L., Boughrara, M., Navez, J., Guiraud, M. (2003) The LATEA metacraton (Central Hoggar, Tuareg 

shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences 

37, 161-190. 
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