Geochemical Perspectives Letters a journal of the European Association of Geochemistry
  • Open access, no page charges
  • Short articles (3000 words)
  • Non-profit community journal
  • Highest-quality research in geochemical sciences

Latest Articles

 Top 10 most viewed articles (cumulative count of HTML views) for the last 60 days.

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 924

4.46 Ga zircons anchor chronology of lunar magma ocean

Abstract:
The crystallisation ages of lunar samples provide critical constraints on the minimum formation age of the Moon and its early evolution. Zircon crystals from Apollo 17 lunar impact melt breccia 72255 preserve ancient domains with a concordant average uranium-lead radiometric date of 4460 ± 31 Ma (Zhang et al., 2021), the oldest lunar zircon yet reported. To assess the possible mobility of radiogenic lead in zircon, which may lead to redistribution and clustering of Pb atoms that may cause a U-Pb age bias (Valley et al., 2014), we investigated a zircon grain from Zhang et al. (2021) by atom probe tomography (APT). The atomic spatial resolution analysis of individual mineral grains demonstrates the absence of nanoscale clustering of lead, which supports a 4.46 Ga ancient formation age for lunar zircon in sample 72255. This age pushes back the age of the first preserved lunar crust by ∼40 Myr and provides a minimum formation age for the Moon within 110 Myr after the formation of the solar system.

J. Greer, B. Zhang, D. Isheim, D.N. Seidman, A. Bouvier, P.R. Heck

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 27, 49–53 | doi: 10.7185/geochemlet.2334 | Published 23 October 2023

Article views: 879

River chemistry reveals a large decrease in dolomite abundance across the Phanerozoic

Abstract:
The abundance of dolomite in ancient carbonate sediments, and its apparent rarity today, has important implications for the coupled Ca-Mg-C-cycles in seawater and global climate. Despite its importance, there are large differences between published records of dolomite abundance vs. geologic age, mainly due to complexities in adequately sampling heterogeneous bedrock. We overcome this issue by using dissolved Mg2+ and Ca2+ measurements in rivers draining carbonate-bearing bedrock. Because rivers weather broad areas, this approach integrates the geochemical composition of much larger volumes of carbonate compared to sample based methods. The average Mg/(Ca + Mg) molar ratio in rivers declines with decreasing bedrock age, from 0.44 at ∼485 million year old (Ma) to 0.14 at ∼5 Ma, suggesting a decreasing percentage of dolomite in carbonate sequences across the Phanerozoic Eon. These data are hard to reconcile with any model that relies only upon oscillatory drivers to explain the dolomite abundance record, such as sea level or episodic expansions of ocean anoxia, and have important implications for the oceanic Mg cycle.

J.M. Husson, L.A. Coogan

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 1–6 | doi: 10.7185/geochemlet.2316 | Published 26 May 2023

Article views: 755

Cd isotope evidence for elevated productivity in the Middle Triassic Ordos Basin

Abstract:
The Middle Triassic witnessed the ecosystem recovery from the End-Permian Mass Extinction. The Ordos Basin is the globally earliest recovered lacustrine ecosystem and preserves a suit of hydrocarbon source rocks. However, dominant mechanisms for the abnormal accumulation of organic matter and ecosystem recovery remain highly debated. We present Cd isotope and redox sensitive trace element data of the Middle Triassic black shales from two wells in the Ordos Basin. The southern well is characterised by extremely high TOC contents (7.6–32.6 wt. %), enhanced Mo-U enrichments, and higher δ114Cdauth values (0.37 ± 0.26 ‰), while the northern well has moderate TOC contents (3.4–10.2 wt. %), slight Mo-U enrichments, and lower δ114Cdauth values (0.06 ± 0.29 ‰). The results suggest that an increase in primary productivity likely driven by active volcanism should play a first order role in the accumulation of organic matter, which was further promoted by local anoxia. The elevated primary productivity and massive burial of organic matter likely contributed to the ecosystem recovery in the Ordos Basin.

H. Yin, W. Wei, Z. Jing, C. Zou, W. Xu, J. Hao, F. Huang

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 33, 13–19 | doi: 10.7185/geochemlet.2446 | Published 4 December 2024

Article views: 642

Dating recent aqueous activity on Mars

Abstract:
Amazonian-age Martian meteorites contain products of indigenous aqueous alteration; yet, establishing when this alteration occurred, and therefore when liquid water was available in the planet’s crust, has proven challenging. New 40Ar/39Ar dates for iddingsite within the Martian meteorite Lafayette show these minerals precipitated from liquid water at 742 ± 15 Ma (2σ). This age is the most precise constraint to date on water–rock interaction on Mars, and postdates formation of the host igneous rock by ∼580 Myr. We infer that magmatic activity most likely induced melting of local permafrost and led to alteration of the nakhlites, suggesting that activation of localised hydrological cycles on Amazonian Mars by magmatism was infrequent and transient, but not unusual.

M.M. Tremblay, D.F. Mark, D.N. Barfod, B.E. Cohen, R.B. Ickert, M.R. Lee, T. Tomkinson, C.L. Smith

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 32, 58–62 | doi: 10.7185/geochemlet.2443 | Published 6 November 2024

Article views: 578

Origin and significance of hydrocarbons in CO2-rich gases from Central Italy seismic areas

Abstract:
Tectonically active areas of Central Italy are marked by intense CO2 degassing, whose origin and role in earthquake processes are fundamental questions in geoscience. This study investigates the origin and geological controls on the geochemistry of light hydrocarbons from CO2-dominated gas emissions located in the inner sector of the Umbria-Marche Apennines (Central Italy), aiming to better understand the sources and migration pathways of geogenic fluids in the region. Our findings indicate that light hydrocarbons are predominantly thermogenic, with negligible abiotic contributions. We demonstrate that Mesozoic carbonate rocks are the primary source across the study area, though conditions of hydrocarbon formation and migration vary. Specifically, higher temperatures and open-system conditions prevail in the southern regions, likely due to thermal stress associated with Quaternary magmatism. We propose that light hydrocarbons form at crustal depths (≤5–6 km) and are transported to the surface by ascending CO2 from deeper sources. Finally, this work highlights that hydrocarbon geochemistry, combined with helium isotopes, can provide insights for reconstructing the circulation and origin of fluids in crustal reservoirs and assessing the thermal regime in tectonically active areas.

A. Ricci, Y. Oliveri, D. Buttitta, G. Capasso, L. Chiaraluce, E. Serpelloni, A. Caracausi

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 33, 20–26 | doi: 10.7185/geochemlet.2447 | Published 5 December 2024

Article views: 530

Silicate and iron phosphate melt immiscibility promotes REE enrichment

Abstract:
A surging rare earth element (REE) demand calls for finding new REE resources. Iron oxide-apatite (IOA) deposits have substantial REE potential, but their REE enrichment mechanisms remain uncertain, hindering REE exploration. The dominant process of IOA deposit formation is also hotly debated. Here, we use novel layered piston-cylinder experiments to address these questions. Seventeen magmatic FeP–Si immiscibility experiments, across 800–1150 °C, and at 0.4 and 0.8 GPa, reproduced many natural textural (e.g., dendritic magnetite) and geochemical (e.g., DLFeP–LSiTi/Fe           < 1) features of IOA deposits. Magmatic-hydrothermal fluid bubbles and iron oxide-bubble pairs formed as well. The results strongly support FeP–Si immiscibility as a controlling factor in IOA deposits, although not mutually exclusive with other models. Light REE partition into FeP liquids, preferentially to heavy REE, explaining the light REE enrichment of IOA deposits. Some DLFeP–LSiREE             values reach above 100, much higher than previously reported. Hence, any FeP rich rock that experienced magmatic Fe-Si immiscibility (e.g., IOA, nelsonites) is expected to be light REE enriched and should be considered as a REE exploration target.

S.C. Yan, B. Wan, M. Anenburg, J.A. Mavrogenes

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 32, 14–20 | doi: 10.7185/geochemlet.2436 | Published 24 September 2024

Article views: 525

Enhanced petrogenic organic carbon oxidation during the Paleocene-Eocene thermal maximum

Abstract:
The Paleocene-Eocene thermal maximum (PETM; ∼56 Ma) is a hyperthermal event associated with the rapid input of carbon into the ocean-atmosphere system. The oxidation of petrogenic organic carbon (OCpetro) may have released additional carbon dioxide (CO2), thereby prolonging the PETM. However, proxy-based estimates of OCpetro oxidation are unavailable due to the lack of suitable techniques. Raman spectroscopy is used to evaluate OCpetro oxidation in modern settings. For the first time, we explore whether Raman spectroscopy can evaluate OCpetro oxidation during the PETM. In the mid-Atlantic Coastal Plain, there is a shift from disordered to graphitised carbon. This is consistent with enhanced oxidation of disordered OCpetro and intensified physical erosion. In the Arctic Ocean, the distribution of graphitised carbon vs. disordered carbon does not change, suggesting limited variability in weathering intensity. Overall, this study provides the first evidence of increased OCpetro oxidation during the PETM, although it was likely not globally uniform. Our work also highlights the utility of Raman spectroscopy as a novel tool to reconstruct OCpetro oxidation in the past.

E.H. Hollingsworth, R.B. Sparkes, J.M. Self-Trail, G.L. Foster, G.N. Inglis

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 33, 1–6 | doi: 10.7185/geochemlet.2444 | Published 25 November 2024

Article views: 480

The extent of liquid immiscibility in planetesimal cores

Abstract:
We report results of experiments in the system Fe0.9Ni0.1, S, P, C, O, which constrain the extent of liquid immiscibility in planetesimal cores. Immiscibility results in segregation of Fe-rich (P-rich, C-rich) and FeS-rich (O-rich) liquids, with the extent of immiscibility dependent on volatile/light element content. Parental liquids to iron meteorites are volatile-poor, and based on our results, mostly represent miscible core-forming liquids. However, as these parental liquids were variably modified during/after planetesimal disruption, they are unlikely to fully represent original compositions of planetesimal cores. To better constrain planetesimal core compositions, we use data from chondrite meteorites to provide upper bounds on core volatile element content. Modelled ‘chondrite cores’ are mostly immiscible liquids. The extent of immiscibility in planetesimal cores was sensitive to the degree of volatile loss during core formation, which was likely variable across planetary bodies, and dependent on thermal history and planetary differentiation processes. As such, evidence for immiscibility in core-forming liquids is useful in constraining the extent of degassing during differentiation.

G.D. Bromiley, M. Varnam, H. Terasaki, T. Komabayashi, J. Barosch

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 33, 7–12 | doi: 10.7185/geochemlet.2445 | Published 26 November 2024

Article views: 475

Production of highly silicic 3.9 to 4.27 Ga crust on the Moon

Abstract:
The preserved remnants of a planetary body’s early crust represent a unique window into chemical and physical processes that shaped its beginning. While iron- and magnesium-rich magmas with low silica (SiO2) are common throughout a rocky body’s active lifetime, the timing of silica-rich crust production during the first 500 Myr of evolution remain uncertain. Silica-rich crust is relatively buoyant, influences the topography of rocky worlds, and concentrates heat-producing radioactive elements. However, identifying early silica-rich crust is challenging due to sample limitation and an inability to directly date silica-rich material like quartz and high-silica glass. Here, we show that the atomic environment around trace amounts of titanium in the mineral zircon is sensitive to the silica content of the magma it crystallised from, providing a new tool to recognise ancient silica-rich crust. By applying this method to 4.27 to 3.93 billion year old lunar zircons, we present evidence for early production of silica-rich crust on the Moon, suggesting this may be a common feature of planetary evolution.

D. Trail, N.D. Tailby, M.R. Ackerson, M. Barboni, M. Newville, A. Lanzirotti, K.D. McKeegan

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 33, 27–31 | doi: 10.7185/geochemlet.2448 | Published 17 December 2024

Article views: 456

 Top 10 most viewed articles (cumulative count of HTML views) for the last 12 months.

River chemistry reveals a large decrease in dolomite abundance across the Phanerozoic

Abstract:
The abundance of dolomite in ancient carbonate sediments, and its apparent rarity today, has important implications for the coupled Ca-Mg-C-cycles in seawater and global climate. Despite its importance, there are large differences between published records of dolomite abundance vs. geologic age, mainly due to complexities in adequately sampling heterogeneous bedrock. We overcome this issue by using dissolved Mg2+ and Ca2+ measurements in rivers draining carbonate-bearing bedrock. Because rivers weather broad areas, this approach integrates the geochemical composition of much larger volumes of carbonate compared to sample based methods. The average Mg/(Ca + Mg) molar ratio in rivers declines with decreasing bedrock age, from 0.44 at ∼485 million year old (Ma) to 0.14 at ∼5 Ma, suggesting a decreasing percentage of dolomite in carbonate sequences across the Phanerozoic Eon. These data are hard to reconcile with any model that relies only upon oscillatory drivers to explain the dolomite abundance record, such as sea level or episodic expansions of ocean anoxia, and have important implications for the oceanic Mg cycle.

J.M. Husson, L.A. Coogan

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 1–6 | doi: 10.7185/geochemlet.2316 | Published 26 May 2023

Article views: 9774

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 6821

4.46 Ga zircons anchor chronology of lunar magma ocean

Abstract:
The crystallisation ages of lunar samples provide critical constraints on the minimum formation age of the Moon and its early evolution. Zircon crystals from Apollo 17 lunar impact melt breccia 72255 preserve ancient domains with a concordant average uranium-lead radiometric date of 4460 ± 31 Ma (Zhang et al., 2021), the oldest lunar zircon yet reported. To assess the possible mobility of radiogenic lead in zircon, which may lead to redistribution and clustering of Pb atoms that may cause a U-Pb age bias (Valley et al., 2014), we investigated a zircon grain from Zhang et al. (2021) by atom probe tomography (APT). The atomic spatial resolution analysis of individual mineral grains demonstrates the absence of nanoscale clustering of lead, which supports a 4.46 Ga ancient formation age for lunar zircon in sample 72255. This age pushes back the age of the first preserved lunar crust by ∼40 Myr and provides a minimum formation age for the Moon within 110 Myr after the formation of the solar system.

J. Greer, B. Zhang, D. Isheim, D.N. Seidman, A. Bouvier, P.R. Heck

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 27, 49–53 | doi: 10.7185/geochemlet.2334 | Published 23 October 2023

Article views: 6274

A genetic classification of the tholeiitic and calc-alkaline magma series

Abstract:
The concept of the ‘magma series’ and the distinction between alkaline, calc-alkaline and tholeiitic trends has been a cornerstone in igneous petrology since the early 20th century, and encodes fundamental information about the redox state of divergent and convergent plate tectonic settings. We show that the ‘Bowen and Fenner trends’ that characterise the calc-alkaline and tholeiitic types of magmatic environments can be approximated by a simple log ratio model based on three coupled exponential decay functions, for A = Na2O + K2O, F = FeOT and M = MgO, respectively. We use this simple natural law to define a ‘Bowen-Fenner Index’ to quantify the degree to which an igneous rock belongs to either magma series. Applying our model to a data compilation of igneous rocks from Iceland and the Cascade Mountains effectively separates these into tholeiitic and calc-alkaline trends. However the simple model fails to capture the distinct dog-leg that characterises the tholeiitic log ratio evolution, which can be attributed to the switch from ferrous to ferric iron-bearing minerals. Parameterising this switch in a two stage magma evolution model results in a more accurate fit to the Icelandic data. The same two stage model can also be fitted in A–T–M space, where ‘T’ stands for TiO2. This produces a new way to identify calc-alkaline and tholeiitic rocks that does not require the conversion of FeO and Fe2O3 to FeOT. Our results demonstrate that log ratio analysis provides a natural way to parameterise physical processes that give rise to these magma series.

P. Vermeesch, V. Pease

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2021) 19, 1–6 | doi: 10.7185/geochemlet.2125 | Published 30 September 2021

Article views: 3724

Silicate and iron phosphate melt immiscibility promotes REE enrichment

Abstract:
A surging rare earth element (REE) demand calls for finding new REE resources. Iron oxide-apatite (IOA) deposits have substantial REE potential, but their REE enrichment mechanisms remain uncertain, hindering REE exploration. The dominant process of IOA deposit formation is also hotly debated. Here, we use novel layered piston-cylinder experiments to address these questions. Seventeen magmatic FeP–Si immiscibility experiments, across 800–1150 °C, and at 0.4 and 0.8 GPa, reproduced many natural textural (e.g., dendritic magnetite) and geochemical (e.g., DLFeP–LSiTi/Fe           < 1) features of IOA deposits. Magmatic-hydrothermal fluid bubbles and iron oxide-bubble pairs formed as well. The results strongly support FeP–Si immiscibility as a controlling factor in IOA deposits, although not mutually exclusive with other models. Light REE partition into FeP liquids, preferentially to heavy REE, explaining the light REE enrichment of IOA deposits. Some DLFeP–LSiREE             values reach above 100, much higher than previously reported. Hence, any FeP rich rock that experienced magmatic Fe-Si immiscibility (e.g., IOA, nelsonites) is expected to be light REE enriched and should be considered as a REE exploration target.

S.C. Yan, B. Wan, M. Anenburg, J.A. Mavrogenes

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 32, 14–20 | doi: 10.7185/geochemlet.2436 | Published 24 September 2024

Article views: 3411

The composition and weathering of the continents over geologic time

Abstract:
The composition of continental crust records the balance between construction by tectonics and destruction by physical and chemical erosion. Quantitative constraints on how igneous addition and chemical weathering have modified the continents’ bulk composition are essential for understanding the evolution of geodynamics and climate. Using novel data analytic techniques we have extracted temporal trends in sediments’ protolith composition and weathering intensity from the largest available compilation of sedimentary major element compositions: ∼15,000 samples from 4.0 Ga to the present. We find that the average Archean upper continental crust was silica-rich and had a similar compositional diversity to modern continents. This is consistent with an early Archean, or earlier, onset of plate tectonics. In the Archean, chemical weathering sequestered ∼25 % more CO2 per mass eroded for the same weathering intensity than in subsequent time periods, consistent with carbon mass balance despite higher Archean outgassing rates and more limited continental exposure. Since 2.0 Ga, over long (>0.5 Gyr) timescales, crustal weathering intensity has remained relatively constant. On shorter timescales over the Phanerozoic, weathering intensity is correlated to global climate state, consistent with a weathering feedback acting in response to changes in CO2 sources or sinks.

A.G. Lipp, O. Shorttle, E.A. Sperling, J.J. Brocks, D.B. Cole, P.W. Crockford, L. Del Mouro, K. Dewing, S.Q. Dornbos, J.F. Emmings, U.C. Farrell, A. Jarrett, B.W. Johnson, P. Kabanov, C.B. Keller, M. Kunzmann, A.J. Miller, N.T. Mills, B. O’Connell, S.E. Peters, N.J. Planavsky, S.R. Ritzer, S.D. Schoepfer, P.R. Wilby, J. Yang

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2021) 17, 21–26 | doi: 10.7185/geochemlet.2109 | Published 2 March 2021

Article views: 3361

Global climate stabilisation by chemical weathering during the Hirnantian glaciation

Abstract:
Chemical weathering of silicate rocks is a primary drawdown mechanism of atmospheric carbon dioxide. The processes that affect weathering are therefore central in controlling global climate. A temperature-controlled “weathering thermostat” has long been proposed in stabilising long-term climate, but without definitive evidence from the geologic record. Here we use lithium isotopes (δ7Li) to assess the impact of silicate weathering across a significant climate-cooling period, the end-Ordovician Hirnantian glaciation (~445 Ma). We find a positive δ7Li excursion, suggestive of a silicate weathering decline. Using a coupled lithium-carbon model, we show that initiation of the glaciation was likely caused by declining CO2 degassing, which triggered abrupt global cooling, and much lower weathering rates. This lower CO2 drawdown during the glaciation allowed climatic recovery and deglaciation. Combined, the data and model provide support from the geological record for the operation of the weathering thermostat.

P.A.E. Pogge von Strandmann, A. Desrochers, M.J. Murphy, A.J. Finlay, D. Selby, T.M. Lenton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 230–237 | doi: 10.7185/geochemlet.1726 | Published 15 June 2017

Article views: 3216

182W evidence for core-mantle interaction in the source of mantle plumes

Abstract:
Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth’s core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182Hf decayed entirely to 182W in the mantle after metal-silicate segregation. Therefore, the 182W isotopic composition of the Earth’s mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.

H. Rizo, D. Andrault, N.R. Bennett, M. Humayun, A. Brandon, I. Vlastelic, B. Moine, A. Poirier, M.A. Bouhifd, D.T. Murphy

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2019) 11, 6–11 | doi: 10.7185/geochemlet.1917 | Published 20 June 2019

Article views: 3082

Calcium isotope fractionation during melt immiscibility and carbonatite petrogenesis

Abstract:
Stable calcium isotopes have been used to suggest that subducted marine carbonates are frequently involved in the formation of carbonatites. Significant Ca isotope fractionations during carbonatite petrogenesis, however, could lead to a dramatically different picture. We present Ca isotope data for (i) coexisting (immiscible) carbonatite and silicate melts from high temperature centrifuging piston cylinder experiments, (ii) primary apatite and calcite/dolomite from natural carbonatites, and (iii) ab initio estimates for equilibrium Ca isotope partitioning in calcite, dolomite, and ankerite. Carbonatitic melts have lower δ44Ca than their conjugate silicate melts, with an equilibrium fractionation factor [1000lnα(1000K)] of −0.21 ± 0.06 (tSE). We develop a quantitative four stage model for carbonatite petrogenesis (partial melting followed by fractional crystallisation, silicate-carbonatite melt immiscibility, and calcite/apatite accumulation) that fully explains our natural data (average δ44CaBSE of −0.30 ± 0.03 ‰) and those from recent studies, without requiring isotopic contributions from recycled marine carbonates. Our results suggest that lighter isotopes of similarly bound cations (e.g., Mg, Fe, Sr, Ba, Zn) should be preferentially incorporated into carbonatitic melts and that calciocarbonatite formation involves melt immiscibility after differentiation of mantle-derived alkaline CO2-bearing silicate melts.

M.A. Antonelli, G. Sartori, A. Giuliani, E.A. Schauble, J. Hoffmann, M.W. Schmidt

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 28, 13–19 | doi: 10.7185/geochemlet.2338 | Published 1 December 2023

Article views: 2880

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

Abstract:
The effusive six months long 2014‒2015 Bárðarbunga eruption (31 August‒27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11.8 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 µg m3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.

S.R. Gíslason, G. Stefánsdóttir, M.A. Pfeffer, S. Barsotti, Th. Jóhannsson, I. Galeczka, E. Bali, O. Sigmarsson, A. Stefánsson, N.S. Keller, Á. Sigurdsson, B. Bergsson, B. Galle, V.C. Jacobo, S. Arellano, A. Aiuppa, E.B. Jónasdóttir, E.S. Eiríksdóttir, S. Jakobsson, G.H. Guðfinnsson, S.A. Halldórsson, H. Gunnarsson, B. Haddadi, I. Jónsdóttir, Th. Thordarson, M. Riishuus, Th. Högnadóttir, T. Dürig, G.B.M. Pedersen, Á. Höskuldsson, M.T. Gudmundsson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 84–93 | doi: 10.7185/geochemlet.1509 | Published 29 June 2015

Article views: 2788

 Top 10 most viewed articles (cumulative count of HTML views) for all time.

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 65007

4.46 Ga zircons anchor chronology of lunar magma ocean

Abstract:
The crystallisation ages of lunar samples provide critical constraints on the minimum formation age of the Moon and its early evolution. Zircon crystals from Apollo 17 lunar impact melt breccia 72255 preserve ancient domains with a concordant average uranium-lead radiometric date of 4460 ± 31 Ma (Zhang et al., 2021), the oldest lunar zircon yet reported. To assess the possible mobility of radiogenic lead in zircon, which may lead to redistribution and clustering of Pb atoms that may cause a U-Pb age bias (Valley et al., 2014), we investigated a zircon grain from Zhang et al. (2021) by atom probe tomography (APT). The atomic spatial resolution analysis of individual mineral grains demonstrates the absence of nanoscale clustering of lead, which supports a 4.46 Ga ancient formation age for lunar zircon in sample 72255. This age pushes back the age of the first preserved lunar crust by ∼40 Myr and provides a minimum formation age for the Moon within 110 Myr after the formation of the solar system.

J. Greer, B. Zhang, D. Isheim, D.N. Seidman, A. Bouvier, P.R. Heck

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 27, 49–53 | doi: 10.7185/geochemlet.2334 | Published 23 October 2023

Article views: 45307

Global climate stabilisation by chemical weathering during the Hirnantian glaciation

Abstract:
Chemical weathering of silicate rocks is a primary drawdown mechanism of atmospheric carbon dioxide. The processes that affect weathering are therefore central in controlling global climate. A temperature-controlled “weathering thermostat” has long been proposed in stabilising long-term climate, but without definitive evidence from the geologic record. Here we use lithium isotopes (δ7Li) to assess the impact of silicate weathering across a significant climate-cooling period, the end-Ordovician Hirnantian glaciation (~445 Ma). We find a positive δ7Li excursion, suggestive of a silicate weathering decline. Using a coupled lithium-carbon model, we show that initiation of the glaciation was likely caused by declining CO2 degassing, which triggered abrupt global cooling, and much lower weathering rates. This lower CO2 drawdown during the glaciation allowed climatic recovery and deglaciation. Combined, the data and model provide support from the geological record for the operation of the weathering thermostat.

P.A.E. Pogge von Strandmann, A. Desrochers, M.J. Murphy, A.J. Finlay, D. Selby, T.M. Lenton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 230–237 | doi: 10.7185/geochemlet.1726 | Published 15 June 2017

Article views: 40537

Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation

Abstract:
The differentiation of Earth into a metallic core and silicate mantle left its signature on the chemical and isotopic composition of the bulk silicate Earth (BSE). This is seen in the depletion of siderophile (metal-loving) relative to lithophile (rock-loving) elements in Earth’s mantle as well as the silicon isotope offset between primitive meteorites (i.e. bulk Earth) and BSE, which is generally interpreted as a proof that Si is present in Earth’s core. Another putative light element in Earth’s core is sulphur; however, estimates of core S abundance vary significantly and, due to its volatile nature, no unequivocal S isotopic signature for core fractionation has thus far been detected. Here we present new high precision isotopic data for Cu, a chalcophile (sulphur-loving) element, which shows that Earth’s mantle is isotopically fractionated relative to bulk Earth. Results from high pressure equilibration experiments suggest that the sense of Cu isotopic fractionation between BSE and bulk Earth requires that a sulphide-rich liquid segregated from Earth’s mantle during differentiation, which likely entered the core. Such an early-stage removal of a sulphide-rich phase from the mantle presents a possible solution to the long-standing 1st terrestrial lead paradox.

P.S. Savage, F. Moynier, H. Chen, J. Siebert, J. Badro, I.S. Puchtel, G. Shofner

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 53–64 | doi: 10.7185/geochemlet.1506 | Published 4 June 2015

Article views: 32980

182W evidence for core-mantle interaction in the source of mantle plumes

Abstract:
Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth’s core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182Hf decayed entirely to 182W in the mantle after metal-silicate segregation. Therefore, the 182W isotopic composition of the Earth’s mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.

H. Rizo, D. Andrault, N.R. Bennett, M. Humayun, A. Brandon, I. Vlastelic, B. Moine, A. Poirier, M.A. Bouhifd, D.T. Murphy

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2019) 11, 6–11 | doi: 10.7185/geochemlet.1917 | Published 20 June 2019

Article views: 31229

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

Abstract:
The effusive six months long 2014‒2015 Bárðarbunga eruption (31 August‒27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11.8 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 µg m3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.

S.R. Gíslason, G. Stefánsdóttir, M.A. Pfeffer, S. Barsotti, Th. Jóhannsson, I. Galeczka, E. Bali, O. Sigmarsson, A. Stefánsson, N.S. Keller, Á. Sigurdsson, B. Bergsson, B. Galle, V.C. Jacobo, S. Arellano, A. Aiuppa, E.B. Jónasdóttir, E.S. Eiríksdóttir, S. Jakobsson, G.H. Guðfinnsson, S.A. Halldórsson, H. Gunnarsson, B. Haddadi, I. Jónsdóttir, Th. Thordarson, M. Riishuus, Th. Högnadóttir, T. Dürig, G.B.M. Pedersen, Á. Höskuldsson, M.T. Gudmundsson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 84–93 | doi: 10.7185/geochemlet.1509 | Published 29 June 2015

Article views: 30019

Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates

Abstract:
Chromium (Cr) isotopes in marine sedimentary rocks can be used as a sensitive proxy for ancient atmospheric oxygen because Cr-isotope fractionation during terrestrial weathering only occurs when pO2 exceeds a threshold value. This is a useful system when applied to rocks of mid-Proterozoic age, where fundamental questions persist about atmospheric pO2 and its relationship to biological innovation. Whereas previous studies have focused on temporally limited iron-rich sedimentary rocks, we present new Cr-isotope data from a suite of mid-Proterozoic marine carbonate rocks. Application of the Cr-isotope proxy to carbonate rocks has the potential to greatly enhance the temporal resolution of Proterozoic palaeo-redox data. Here we report positive δ53Cr values in four carbonate successions, extending the mid-Proterozoic record of Cr-isotope fractionation – and thus pO2 above threshold values – back to ~1.1 Ga. These data suggest that pO2 sufficient for the origin of animals was transiently in place well before their Neoproterozoic appearance, although uncertainty in the pO2 threshold required for Cr-isotope fractionation precludes definitive biological interpretation. This study provides a proof of concept that the Cr-isotopic composition of carbonate rocks can provide important new constraints on the oxygen content of the ancient atmosphere.

G.J. Gilleaudeau, R. Frei, A.J. Kaufman, L.C. Kah, K. Azmy, J.K. Bartley, P. Chernyavskiy, A.H. Knoll

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 178–187 | doi: 10.7185/geochemlet.1618 | Published 24 May 2016

Article views: 28693

Release of subducted sedimentary nitrogen throughout Earth’s mantle

Abstract:
The dynamic process of subduction represents the principal means to introduce chemical heterogeneities into Earth's interior. In the case of nitrogen (N) - atmosphere's most abundant gas - biological-activity converts N2 into ammonium ions (NH4+), which are chemically-bound within seafloor sediments and altered oceanic crust that comprise the subducting slab. Although some subducted N re-emerges via arc-related volcanism (Sano et al., 1998), the majority likely bypasses sub-arc depths (150-200 km) and supplies the deeper mantle (Li et al., 2007; Mitchell et al., 2010; Johnson and Goldblatt, 2015; Bebout et al., 2016). However, the fate of subducted N remains enigmatic: is it incorporated by the shallow convecting mantle - the source of ridge volcanism, or is the deeper mantle - nominally associated with mantle plumes - its ultimate repository? Here, we present N-He-Ne-Ar isotope data for oceanic basalts from the Central Indian Ridge (CIR)-Réunion plume region to address this issue. All on-axis samples with depleted MORB mantle (DMM) affinities (3He/4He = 8 ± 1 RA; Graham, 2002) have low N-isotopes (mean δ15N = -2.1 ‰), whereas those with plume-like 3He/4He display higher values (mean δ15N = 1.3 ‰). We explain these data within the framework of a new mantle reference model to predict a time-integrated net N regassing flux to the mantle of ~3.4 × 1010 mol/yr, with the plume-source mantle representing the preferential destination by a factor of 2-3. The model has implications for the present-day imbalance between N subducted at trenches and N emitted via arc-related volcanism, the N-content of Earth's early atmosphere, as well as relationships between N2 and the noble gases in mantle reservoirs, including 3He/4He-δ15N relationships in plume-derived lavas.

P.H. Barry, D.R. Hilton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 148–159 | doi: 10.7185/geochemlet.1615 | Published 3 May 2016

Article views: 28441

Molecular hydrogen in mantle minerals

Abstract:
Current models assume that hydrogen was delivered to Earth already in oxidised form as water or OH groups in minerals; similarly, it is generally believed that hydrogen is stored in the present mantle mostly as OH. Here we show by experiments at 2-7 GPa and 1100-1300 °C that, under reducing conditions, molecular hydrogen (H2) has an appreciable solubility in various upper mantle minerals. This observation suggests that during the accretion of the Earth, nebular H2 could have been delivered to the growing solid planet by direct dissolution in a magma ocean and subsequent incorporation in silicates. Moreover, the presence of dissolved molecular H2 in the minerals of the lower mantle could explain why magmas sourced in this region are rich in hydrogen, despite the fact that lower mantle minerals contain almost no OH groups.

X. Yang, H. Keppler, Y. Li

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 160–168 | doi: 10.7185/geochemlet.1616 | Published 18 March 2016

Article views: 27146

Rapid response of silicate weathering rates to climate change in the Himalaya

Abstract:
Chemical weathering of continental rocks plays a central role in regulating the carbon cycle and the Earth's climate (Walker et al., 1981; Berner et al., 1983), accounting for nearly half the consumption of atmospheric carbon dioxide globally (Beaulieu et al., 2012). However, the role of climate variability on chemical weathering is still strongly debated. Here we focus on the Himalayan range and use the lithium isotopic composition of clays in fluvial terraces to show a tight coupling between climate change and chemical weathering over the past 40 ka. Between 25 and 10 ka ago, weathering rates decrease despite temperature increase and monsoon intensification. This suggests that at this timescale, temperature plays a secondary role compared to runoff and physical erosion, which inhibit chemical weathering by accelerating sediment transport and act as fundamental controls in determining the feedback between chemical weathering and atmospheric carbon dioxide.

A. Dosseto, N. Vigier, R. Joannes-Boyau, I. Moffat, T. Singh, P. Srivastava

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 10–19 | doi: 10.7185/geochemlet.1502 | Published 20 February 2015

Article views: 26484