Geochemical Perspectives Letters is an internationally peer-reviewed journal of the European Association of Geochemistry,
produced by and for the geochemical community:
Open access
Short (3000 words all inclusive)
Highest-quality articles spanning geochemical sciences

Latest articles

 Top 10 most viewed articles (cumulative count of HTML views) for the last 60 days.

Diamond forms during low pressure serpentinisation of oceanic lithosphere

Abstract:
Diamond is commonly regarded as an indicator of ultra-high pressure conditions in Earth System Science. This canonical view is challenged by recent data and interpretations that suggest metastable growth of diamond in low pressure environments. One such environment is serpentinisation of oceanic lithosphere, which produces highly reduced CH4-bearing fluids after olivine alteration by reaction with infiltrating fluids. Here we report the first ever observed in situ diamond within olivine-hosted, CH4-rich fluid inclusions from low pressure oceanic gabbro and chromitite samples from the Moa-Baracoa ophiolitic massif, eastern Cuba. Diamond is encapsulated in voids below the polished mineral surface forming a typical serpentinisation array, with methane, serpentine and magnetite, providing definitive evidence for its metastable growth upon low temperature and low pressure alteration of oceanic lithosphere and super-reduction of infiltrated fluids. Thermodynamic modelling of the observed solid and fluid assemblage at a reference P-T point appropriate for serpentinisation (350 °C and 100 MPa) is consistent with extreme reduction of the fluid to logfO2 (MPa) = −45.3 (ΔlogfO2[Iron-Magnetite] = −6.5). These findings imply that the formation of metastable diamond at low pressure in serpentinised olivine is a widespread process in modern and ancient oceanic lithosphere, questioning a generalised ultra-high pressure origin for ophiolitic diamond.

N. Pujol-Solà, A. Garcia-Casco, J.A. Proenza, J.M. González-Jiménez, A. del Campo, V. Colás, À. Canals, A. Sánchez-Navas, J. Roqué-Rosell

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2020) 15, 19–24 | doi: 10.7185/geochemlet.2029 | Published 10 September 2020

Article views: 2119

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 1197

Termination of Cryogenian ironstone deposition by deep ocean euxinia

Abstract:
Widespread deposition of iron-rich sedimentary rocks (ironstones) occurred during the Sturtian ice age, the earlier of two Cryogenian ‘Snowball Earth’ glaciations. However, the reasons for the termination of Cryogenian Iron Formation (CIF) deposition remain poorly understood. Here we report a multi-isotope (Fe-C-S) study of the Xinyu CIF in South China that can directly address this question. The isotopic compositions of these multivalent elements exhibit remarkable covariance at the top of the Xinyu CIF that reflects progressive redox stratification during iron oxide deposition. Iron oxide deposition ended abruptly due to the titration of ferrous iron as pyrite following a large influx of riverine sulfate. Although termination of CIF deposition is commonly attributed to oxygenation, our data show that at least in some Cryogenian ocean basins, CIF deposition ended with the spread of euxinic rather than oxygenated waters.

C. Wu, T. Yang, G.A. Shields, X. Bian, B. Gao, H. Ye, W. Li

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2020) 15, 1–5 | doi: 10.7185/geochemlet.2025 | Published 23 July 2020

Article views: 843

182W evidence for core-mantle interaction in the source of mantle plumes

Abstract:
Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth’s core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182Hf decayed entirely to 182W in the mantle after metal-silicate segregation. Therefore, the 182W isotopic composition of the Earth’s mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.

H. Rizo, D. Andrault, N.R. Bennett, M. Humayun, A. Brandon, I. Vlastelic, B. Moine, A. Poirier, M.A. Bouhifd, D.T. Murphy

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2019) 11, 6–11 | doi: 10.7185/geochemlet.1917 | Published 20 June 2019

Article views: 788

Triple oxygen isotopes of meteoric hydrothermal systems – implications for palaeoaltimetry

Abstract:
We use triple oxygen isotopes of altered granitic rocks to determine the isotope composition of meteoric waters in a fossil hydrothermal system, the low δ18O Eocene Idaho Batholith, originally studied by Criss and Taylor (1983). In doing so we: 1) test whether meteoric water values estimated from previous δ18O and δD analyses on quartz, feldspar and biotite are robust and 2) determine the palaeoelevation of the Eocene highlands that are presently constrained primarily by the δ18O and δD of paired muscovite and quartz from core complexes and altered granites. Our calculated δ18O values of meteoric water are higher than estimates that use combined feldspar δ18O and biotite δD measurements in these hydrothermally altered granites and δD values from muscovite from nearby core complexes (Mulch et al., 2004). Both methods are consistent with a high elevation (∼3.1 to 4.7 km) Eocene highland in the northwestern U.S. Cordillera.

C.P. Chamberlain, D.E. Ibarra, M.K. Lloyd, T. Kukla, D. Sjostrom, Y. Gao, Z.D. Sharp

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2020) 15, 6–9 | doi: 10.7185/geochemlet.2026 | Published 28 July 2020

Article views: 758

Not so non-marine? Revisiting the Stoer Group and the Mesoproterozoic biosphere

Abstract:
The Poll a’Mhuilt Member of the Stoer Group (Torridonian Supergroup) in Scotland has been heralded as a rare window into the ecology of Mesoproterozoic terrestrial environments. Its unusually high molybdenum concentrations and large sulphur isotope fractionations have been used as evidence to suggest that lakes 1.2 billion years ago were better oxygenated and enriched in key nutrients relative to contemporaneous oceans, making them ideal habitats for the evolution of eukaryotes. Here we show with new Sr and Mo isotope data, supported by sedimentological evidence, that the depositional setting of this unit was likely connected to the ocean and that the elevated Mo and S contents can be explained by evapo-concentration of seawater. Thus, it remains unresolved if Mesoproterozoic lakes were important habitats for early eukaryotic life.

E.E. Stüeken, E.J. Bellefroid, A. Prave, D. Asael, N.J. Planavsky, T.W. Lyons

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 221–229 | doi: 10.7185/geochemlet.1725 | Published 13 June 2017

Article views: 624

Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin

Abstract:
The role of microorganisms in the geochemical cycle of P has received great interest in the context of enhanced biological phosphorus removal and phosphorite formation. Here, we combine scanning and transmission electron microscopies, confocal laser scanning microscopy and synchrotron-based x-ray microfluorescence to analyse the distribution of P at the oxic-anoxic interface in the water column of the ferruginous Lake Pavin. We show that magnetotactic bacteria of the Magnetococcaceae family strongly accumulate polyphosphates and appear as P hotspots in the particulate fraction at this depth. This high accumulation may be characteristic of this family and may also relate to the chemical conditions prevailing in the lake. As a result, these magnetotactic cocci can be considered as new models playing a potentially important role in the P geochemical cycle, similar to sulphide oxidising bacteria such as Thiomargarita and Beggiatoa but thriving in a ferruginous, poorly sulphidic environment.

S. Rivas-Lamelo, K. Benzerara, C.T. Lefèvre, C.L. Monteil, D. Jézéquel, N. Menguy, E. Viollier, F. Guyot, C. Férard, M. Poinsot, F. Skouri-Panet, N. Trcera, J. Miot, E. Duprat

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 5, 35–41 | doi: 10.7185/geochemlet.1743 | Published 15 November 2017

Article views: 619

Potential of Earth’s core as a reservoir for noble gases: Case for helium and neon

Abstract:
This study investigates metal–silicate partitioning of neon (DNe) under the likely conditions of early Earth’s core formation: up to 16 GPa, ∼ 3000 K and an oxygen fugacity near IW-2 (2 log units below the Iron-Wüstite buffer). We find that the DNe coefficients range between 10−2 and 10−1. These partition coefficients are only one of the controlling factors of noble gas distributions within the early Earth: because, even if DHe and DNe are low (∼10−4), there may have been sufficient noble gases present in the mantle to supply a significant quantity of He and Ne to the core. Assuming gas-melt equilibrium of the molten proto-Earth with a nebular gas composition and concomitant metal-silicate differentiation, the core would have inherited and maintained throughout Earth’s history high 3He/4He ratios and low 3He/22Ne ratios (<0.6), making the core a potential source of primordial light noble gases in mantle plumes.

M.A. Bouhifd, A.P. Jephcoat, D. Porcelli, S.P. Kelley, B. Marty

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2020) 15, 15–18 | doi: 10.7185/geochemlet.2028 | Published 9 September 2020

Article views: 596

Rapid onset of ocean anoxia shown by high U and low Mo isotope compositions of sapropel S1

Abstract:
Authigenic uranium isotope compositions of Holocene sapropel S1 (δ238Uauth = +0.10 to +0.52 ‰; ODP core 967, 2550 mbsl) are significantly higher than the proposed upper boundary (+0.2 ‰) associated with the transport-porewater diffusion model for sediment uranium uptake. It is shown that these high δ238Uauth values are compatible with rapid initial slowdown of thermohaline overturning and the development of an anoxic water column. These conditions would favour U uptake in an organic-rich floccule layer overlying the sediment-water interface. The high δ238Uauth values correlate with low δ98Moauth values (+0.02 to −0.88 ‰), interpreted to reflect weakly euxinic conditions controlled by thiomolybdate–molybdate solution equilibria. The S1 data contrast markedly with published data from last interglacial sapropel S5 from the same core, which show δ238Uauth and δ98Moauth characteristics compatible with a restricted euxinic basin due to progressive slowdown in the thermohaline circulation. The U-Mo isotope data for S1 are similar to a range of published palaeo-settings. Sapropels are therefore shown to be useful templates for the unravelling of the interplay between productivity and deep water renewal times in ancient settings.

M.B. Andersen, A. Matthews, M. Bar-Matthews, D. Vance

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2020) 15, 10–14 | doi: 10.7185/geochemlet.2027 | Published 2 September 2020

Article views: 585

Apollo 15 green glass He-Ne-Ar signatures – In search for indigenous lunar noble gases

Abstract:
Identifying indigenous lunar noble gases in samples returned by the Apollo and Luna missions is highly challenging because contributions from the solar wind (SW) and/or cosmogenic nuclides have modified the noble gas signature of the regolith and rocks exposed to space at the lunar surface. Here we re-investigate the possible presence of indigenous noble gases in pyroclastic Apollo 15426 green glasses based on precise measurements of He-Ne-Ar isotopic compositions and abundances. The noble gas content of single glass beads varies by two orders of magnitude, indicating that they experienced highly variable irradiation histories as a result of intense regolith stirring by impact gardening. Four out of the twelve spherules stand out by having the highest He-Ne-Ar abundances and by releasing an isotopically 'solar-like' noble gas component at high temperatures. While a contribution from indigenous noble gases cannot be ruled out, the data are best accounted for by inward diffusion of, and equilibration with, SW-derived volatiles during prolonged space exposure.

E. Füri, L. Zimmermann, A.E. Saal

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 8, 1–5 | doi: 10.7185/geochemlet.1819 | Published 7 September 2018

Article views: 578

 Top 10 most viewed articles (cumulative count of HTML views) for all time.

Global climate stabilisation by chemical weathering during the Hirnantian glaciation

Abstract:
Chemical weathering of silicate rocks is a primary drawdown mechanism of atmospheric carbon dioxide. The processes that affect weathering are therefore central in controlling global climate. A temperature-controlled “weathering thermostat” has long been proposed in stabilising long-term climate, but without definitive evidence from the geologic record. Here we use lithium isotopes (δ7Li) to assess the impact of silicate weathering across a significant climate-cooling period, the end-Ordovician Hirnantian glaciation (~445 Ma). We find a positive δ7Li excursion, suggestive of a silicate weathering decline. Using a coupled lithium-carbon model, we show that initiation of the glaciation was likely caused by declining CO2 degassing, which triggered abrupt global cooling, and much lower weathering rates. This lower CO2 drawdown during the glaciation allowed climatic recovery and deglaciation. Combined, the data and model provide support from the geological record for the operation of the weathering thermostat.

P.A.E. Pogge von Strandmann, A. Desrochers, M.J. Murphy, A.J. Finlay, D. Selby, T.M. Lenton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 230–237 | doi: 10.7185/geochemlet.1726 | Published 15 June 2017

Article views: 26485

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 25010

Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation

Abstract:
The differentiation of Earth into a metallic core and silicate mantle left its signature on the chemical and isotopic composition of the bulk silicate Earth (BSE). This is seen in the depletion of siderophile (metal-loving) relative to lithophile (rock-loving) elements in Earth’s mantle as well as the silicon isotope offset between primitive meteorites (i.e. bulk Earth) and BSE, which is generally interpreted as a proof that Si is present in Earth’s core. Another putative light element in Earth’s core is sulphur; however, estimates of core S abundance vary significantly and, due to its volatile nature, no unequivocal S isotopic signature for core fractionation has thus far been detected. Here we present new high precision isotopic data for Cu, a chalcophile (sulphur-loving) element, which shows that Earth’s mantle is isotopically fractionated relative to bulk Earth. Results from high pressure equilibration experiments suggest that the sense of Cu isotopic fractionation between BSE and bulk Earth requires that a sulphide-rich liquid segregated from Earth’s mantle during differentiation, which likely entered the core. Such an early-stage removal of a sulphide-rich phase from the mantle presents a possible solution to the long-standing 1st terrestrial lead paradox.

P.S. Savage, F. Moynier, H. Chen, J. Siebert, J. Badro, I.S. Puchtel, G. Shofner

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 53–64 | doi: 10.7185/geochemlet.1506 | Published 4 June 2015

Article views: 20789

Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates

Abstract:
Chromium (Cr) isotopes in marine sedimentary rocks can be used as a sensitive proxy for ancient atmospheric oxygen because Cr-isotope fractionation during terrestrial weathering only occurs when pO2 exceeds a threshold value. This is a useful system when applied to rocks of mid-Proterozoic age, where fundamental questions persist about atmospheric pO2 and its relationship to biological innovation. Whereas previous studies have focused on temporally limited iron-rich sedimentary rocks, we present new Cr-isotope data from a suite of mid-Proterozoic marine carbonate rocks. Application of the Cr-isotope proxy to carbonate rocks has the potential to greatly enhance the temporal resolution of Proterozoic palaeo-redox data. Here we report positive δ53Cr values in four carbonate successions, extending the mid-Proterozoic record of Cr-isotope fractionation – and thus pO2 above threshold values – back to ~1.1 Ga. These data suggest that pO2 sufficient for the origin of animals was transiently in place well before their Neoproterozoic appearance, although uncertainty in the pO2 threshold required for Cr-isotope fractionation precludes definitive biological interpretation. This study provides a proof of concept that the Cr-isotopic composition of carbonate rocks can provide important new constraints on the oxygen content of the ancient atmosphere.

G.J. Gilleaudeau, R. Frei, A.J. Kaufman, L.C. Kah, K. Azmy, J.K. Bartley, P. Chernyavskiy, A.H. Knoll

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 178–187 | doi: 10.7185/geochemlet.1618 | Published 24 May 2016

Article views: 19172

Release of subducted sedimentary nitrogen throughout Earth’s mantle

Abstract:
The dynamic process of subduction represents the principal means to introduce chemical heterogeneities into Earth's interior. In the case of nitrogen (N) - atmosphere's most abundant gas - biological-activity converts N2 into ammonium ions (NH4+), which are chemically-bound within seafloor sediments and altered oceanic crust that comprise the subducting slab. Although some subducted N re-emerges via arc-related volcanism (Sano et al., 1998), the majority likely bypasses sub-arc depths (150-200 km) and supplies the deeper mantle (Li et al., 2007; Mitchell et al., 2010; Johnson and Goldblatt, 2015; Bebout et al., 2016). However, the fate of subducted N remains enigmatic: is it incorporated by the shallow convecting mantle - the source of ridge volcanism, or is the deeper mantle - nominally associated with mantle plumes - its ultimate repository? Here, we present N-He-Ne-Ar isotope data for oceanic basalts from the Central Indian Ridge (CIR)-Réunion plume region to address this issue. All on-axis samples with depleted MORB mantle (DMM) affinities (3He/4He = 8 ± 1 RA; Graham, 2002) have low N-isotopes (mean δ15N = -2.1 ‰), whereas those with plume-like 3He/4He display higher values (mean δ15N = 1.3 ‰). We explain these data within the framework of a new mantle reference model to predict a time-integrated net N regassing flux to the mantle of ~3.4 × 1010 mol/yr, with the plume-source mantle representing the preferential destination by a factor of 2-3. The model has implications for the present-day imbalance between N subducted at trenches and N emitted via arc-related volcanism, the N-content of Earth's early atmosphere, as well as relationships between N2 and the noble gases in mantle reservoirs, including 3He/4He-δ15N relationships in plume-derived lavas.

P.H. Barry, D.R. Hilton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 148–159 | doi: 10.7185/geochemlet.1615 | Published 3 May 2016

Article views: 18902

Rapid response of silicate weathering rates to climate change in the Himalaya

Abstract:
Chemical weathering of continental rocks plays a central role in regulating the carbon cycle and the Earth's climate (Walker et al., 1981; Berner et al., 1983), accounting for nearly half the consumption of atmospheric carbon dioxide globally (Beaulieu et al., 2012). However, the role of climate variability on chemical weathering is still strongly debated. Here we focus on the Himalayan range and use the lithium isotopic composition of clays in fluvial terraces to show a tight coupling between climate change and chemical weathering over the past 40 ka. Between 25 and 10 ka ago, weathering rates decrease despite temperature increase and monsoon intensification. This suggests that at this timescale, temperature plays a secondary role compared to runoff and physical erosion, which inhibit chemical weathering by accelerating sediment transport and act as fundamental controls in determining the feedback between chemical weathering and atmospheric carbon dioxide.

A. Dosseto, N. Vigier, R. Joannes-Boyau, I. Moffat, T. Singh, P. Srivastava

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 10–19 | doi: 10.7185/geochemlet.1502 | Published 20 February 2015

Article views: 16937

Molecular hydrogen in mantle minerals

Abstract:
Current models assume that hydrogen was delivered to Earth already in oxidised form as water or OH groups in minerals; similarly, it is generally believed that hydrogen is stored in the present mantle mostly as OH. Here we show by experiments at 2-7 GPa and 1100-1300 °C that, under reducing conditions, molecular hydrogen (H2) has an appreciable solubility in various upper mantle minerals. This observation suggests that during the accretion of the Earth, nebular H2 could have been delivered to the growing solid planet by direct dissolution in a magma ocean and subsequent incorporation in silicates. Moreover, the presence of dissolved molecular H2 in the minerals of the lower mantle could explain why magmas sourced in this region are rich in hydrogen, despite the fact that lower mantle minerals contain almost no OH groups.

X. Yang, H. Keppler, Y. Li

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 160–168 | doi: 10.7185/geochemlet.1616 | Published 18 March 2016

Article views: 16640

182W evidence for core-mantle interaction in the source of mantle plumes

Abstract:
Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth’s core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182Hf decayed entirely to 182W in the mantle after metal-silicate segregation. Therefore, the 182W isotopic composition of the Earth’s mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.

H. Rizo, D. Andrault, N.R. Bennett, M. Humayun, A. Brandon, I. Vlastelic, B. Moine, A. Poirier, M.A. Bouhifd, D.T. Murphy

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2019) 11, 6–11 | doi: 10.7185/geochemlet.1917 | Published 20 June 2019

Article views: 15986

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

Abstract:
The effusive six months long 2014‒2015 Bárðarbunga eruption (31 August‒27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11.8 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 µg m3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.

S.R. Gíslason, G. Stefánsdóttir, M.A. Pfeffer, S. Barsotti, Th. Jóhannsson, I. Galeczka, E. Bali, O. Sigmarsson, A. Stefánsson, N.S. Keller, Á. Sigurdsson, B. Bergsson, B. Galle, V.C. Jacobo, S. Arellano, A. Aiuppa, E.B. Jónasdóttir, E.S. Eiríksdóttir, S. Jakobsson, G.H. Guðfinnsson, S.A. Halldórsson, H. Gunnarsson, B. Haddadi, I. Jónsdóttir, Th. Thordarson, M. Riishuus, Th. Högnadóttir, T. Dürig, G.B.M. Pedersen, Á. Höskuldsson, M.T. Gudmundsson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 84–93 | doi: 10.7185/geochemlet.1509 | Published 29 June 2015

Article views: 15945

Growth of upper plate lithosphere controls tempo of arc magmatism: Constraints from Al-diffusion kinetics and coupled Lu-Hf and Sm-Nd chronology

Abstract:
Most magmatism occurs at mid-ocean ridges, where plate divergence leads to decompression melting of the mantle, and at volcanic arcs, where subduction leads to volatile-assisted decompression melting in the hot mantle wedge. While plate spreading and subduction are continuous, arc magmatism, particularly in continental arcs, is characterised by >10-50 Myr intervals of enhanced magmatic activity followed by rapid decline (DeCelles et al., 2009). In some cases, such as the Andes, this pattern has recurred several times (Haschke et al., 2002). Abrupt changes in plate convergence rates and direction (Pilger, 1984) or repeated steepening and shallowing of subducting slabs (Kay and Coira, 2009) have been suggested as triggering flare-ups or terminating magmatism, but such scenarios may not be sufficiently general. Here, we examine the thermal history of deep crustal and lithospheric xenoliths from the Cretaceous Sierra Nevada batholith, California (USA). The deepest samples (~90 km), garnet-bearing spinel peridotites, show cooling-related exsolution of garnet from high-Al pyroxenes originally formed at >1275 °C. Modelling of pyroxene Al diffusion profiles requires rapid cooling from 1275 to 750 °C within ~10 Myr. Also suggesting deep-seated, rapid cooling is a garnet websterite from ~90 km depth with nearly identical Lu-Hf (92.6 ± 1.6 Ma) and Sm-Nd (88.8 ± 3.1 Ma) isochron ages to within error. Thermal modelling shows that this cooling history can be explained by impingement of the base of the Sierran lithosphere against a cold subducting slab at ~90 km depth, precluding cooling by shallowing subduction. Rather, the coincidence of the radiometric ages with the magmatic flare-up (120-80 Ma) suggests that the hot mantle wedge above the subducting slab may have been pinched out by magmatic (± tectonic) thickening of the upper plate, eventually terminating mantle melting. Magmatic flare-ups in continental arcs are thus self-limiting, which explains why continental arc magmatism occurs in narrow time intervals. Convective removal of the deep arc lithosphere can initiate another magmatic cycle.

E.J. Chin, C.-T.A. Lee, J. Blichert-Toft

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 20–32 | doi: 10.7185/geochemlet.1503 | Published 8 April 2015

Article views: 14970