Geochemical Perspectives Letters a journal of the European Association of Geochemistry
  • Open access, no page charges
  • Short articles (3000 words)
  • Non-profit community journal
  • Highest-quality research in geochemical sciences

Latest Articles

 Top 10 most viewed articles (cumulative count of HTML views) for the last 60 days.

River chemistry reveals a large decrease in dolomite abundance across the Phanerozoic

Abstract:
The abundance of dolomite in ancient carbonate sediments, and its apparent rarity today, has important implications for the coupled Ca-Mg-C-cycles in seawater and global climate. Despite its importance, there are large differences between published records of dolomite abundance vs. geologic age, mainly due to complexities in adequately sampling heterogeneous bedrock. We overcome this issue by using dissolved Mg2+ and Ca2+ measurements in rivers draining carbonate-bearing bedrock. Because rivers weather broad areas, this approach integrates the geochemical composition of much larger volumes of carbonate compared to sample based methods. The average Mg/(Ca + Mg) molar ratio in rivers declines with decreasing bedrock age, from 0.44 at ∼485 million year old (Ma) to 0.14 at ∼5 Ma, suggesting a decreasing percentage of dolomite in carbonate sequences across the Phanerozoic Eon. These data are hard to reconcile with any model that relies only upon oscillatory drivers to explain the dolomite abundance record, such as sea level or episodic expansions of ocean anoxia, and have important implications for the oceanic Mg cycle.

J.M. Husson, L.A. Coogan

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 1–6 | doi: 10.7185/geochemlet.2316 | Published 26 May 2023

Article views: 1520

Tracking the formation of magma oceans in the Solar System using stable magnesium isotopes

Abstract:
The processes associated with magma ocean formation and solidification can control the earliest compositional differentiation and volatile inventory of planetary bodies. Thus, elucidating the scale and extent to which magma oceans existed in the Solar System is critical for a full understanding of planet formation. Here we show that the magnesium isotope compositions of the co-magmatic diogenite and eucrite meteorites originating from the protoplanet Vesta are distinct and this is a predictable consequence of extensive crystallisation in a shallow magma ocean. The enrichment in the heavy magnesium isotopes observed in eucrites relative to diogenites is consistent with the isotopic differences measured between minerals and whole-rock basalts on Earth and other asteroids. This isotope effect is not readily observed on Earth due to the lower primary melt magnesium contents produced at smaller degrees of melting and less extensive amounts of mafic mineral crystallisation. However, it is discernible on other planetary bodies where magma oceans formed and crystallised and, thus, Mg isotopes provide a tracer of their previous existence.

M. Schiller, J.A. Dallas, J. Creech, M. Bizzarro, J.A. Baker

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 22–31 | doi: 10.7185/geochemlet.1703 | Published 1 September 2016

Article views: 601

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 470

4.46 Ga zircons anchor chronology of lunar magma ocean

Abstract:
The crystallisation ages of lunar samples provide critical constraints on the minimum formation age of the Moon and its early evolution. Zircon crystals from Apollo 17 lunar impact melt breccia 72255 preserve ancient domains with a concordant average uranium-lead radiometric date of 4460 ± 31 Ma (Zhang et al., 2021), the oldest lunar zircon yet reported. To assess the possible mobility of radiogenic lead in zircon, which may lead to redistribution and clustering of Pb atoms that may cause a U-Pb age bias (Valley et al., 2014), we investigated a zircon grain from Zhang et al. (2021) by atom probe tomography (APT). The atomic spatial resolution analysis of individual mineral grains demonstrates the absence of nanoscale clustering of lead, which supports a 4.46 Ga ancient formation age for lunar zircon in sample 72255. This age pushes back the age of the first preserved lunar crust by ∼40 Myr and provides a minimum formation age for the Moon within 110 Myr after the formation of the solar system.

J. Greer, B. Zhang, D. Isheim, D.N. Seidman, A. Bouvier, P.R. Heck

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 27, 49–53 | doi: 10.7185/geochemlet.2334 | Published 23 October 2023

Article views: 349

A two stage impact melting process in an impact glass strewn field from the Atacama Desert

Abstract:
A new type of silica-rich glass has been discovered associated with the known impact glass strewn field of the Atacama Desert. Based on petrography, chemical composition and indistinguishable 40Ar/39Ar formation ages at circa 6.6 Ma, we infer that these two glasses were produced by the same impact event, which gave rise to two successive compositionally different melt batches in close succession. The first one is a silica-rich melt derived from a mixture of quartz sand and weathered magmatic rocks. It is reduced and devoid of extraterrestrial contamination. The second one, much more abundant and which corresponds to the normal glass, is oxidised, highly contaminated by the iron type impactor and derived from an underlying unweathered dacitic rock. This scheme sheds a new light on the first second of the interaction between the Earth surface and a large metallic asteroid.

P. Rochette, G. Di Vincenzo, J. Gattacceca, J.A. Barrat, B. Devouard, L. Folco, A. Musolino, Y. Quesnel

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 30, 28–33 | doi: 10.7185/geochemlet.2418 | Published 3 May 2024

Article views: 349

The composition and weathering of the continents over geologic time

Abstract:
The composition of continental crust records the balance between construction by tectonics and destruction by physical and chemical erosion. Quantitative constraints on how igneous addition and chemical weathering have modified the continents’ bulk composition are essential for understanding the evolution of geodynamics and climate. Using novel data analytic techniques we have extracted temporal trends in sediments’ protolith composition and weathering intensity from the largest available compilation of sedimentary major element compositions: ∼15,000 samples from 4.0 Ga to the present. We find that the average Archean upper continental crust was silica-rich and had a similar compositional diversity to modern continents. This is consistent with an early Archean, or earlier, onset of plate tectonics. In the Archean, chemical weathering sequestered ∼25 % more CO2 per mass eroded for the same weathering intensity than in subsequent time periods, consistent with carbon mass balance despite higher Archean outgassing rates and more limited continental exposure. Since 2.0 Ga, over long (>0.5 Gyr) timescales, crustal weathering intensity has remained relatively constant. On shorter timescales over the Phanerozoic, weathering intensity is correlated to global climate state, consistent with a weathering feedback acting in response to changes in CO2 sources or sinks.

A.G. Lipp, O. Shorttle, E.A. Sperling, J.J. Brocks, D.B. Cole, P.W. Crockford, L. Del Mouro, K. Dewing, S.Q. Dornbos, J.F. Emmings, U.C. Farrell, A. Jarrett, B.W. Johnson, P. Kabanov, C.B. Keller, M. Kunzmann, A.J. Miller, N.T. Mills, B. O’Connell, S.E. Peters, N.J. Planavsky, S.R. Ritzer, S.D. Schoepfer, P.R. Wilby, J. Yang

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2021) 17, 21–26 | doi: 10.7185/geochemlet.2109 | Published 2 March 2021

Article views: 343

Direct evidence of CO2 drawdown through enhanced weathering in soils

Abstract:
The ability of engineered enhanced weathering to impact atmospheric CO2 has been challenging to demonstrate due to the many processes occurring in soils and the short time span of current projects. Here we report the carbon balance in an Icelandic Histic/Gleyic Andosol that has received large quantities of basaltic dust over 3300 years, providing opportunity to quantify the rates and long term consequences of enhanced weathering. The added basaltic dust has dissolved continuously since its deposition. The alkalinity of the soil waters is more than 10 times higher than in equivalent basalt dust-free soils. After accounting for oxidation and degassing when the soil waters are exposed to the atmosphere, the annual CO2 drawdown due to alkalinity generation is 0.17 t C ha−1 yr−1. This study validates the ability of fine grained mafic mineral addition to soils to attenuate increasing atmospheric CO2 by alkalinity export. Induced changes in soil organic carbon storage, however, likely dominate the net CO2 drawdown of enhanced weathering efforts.

T. Linke, E.H. Oelkers, S.C. Möckel, S.R. Gislason

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 30, 7–12 | doi: 10.7185/geochemlet.2415 | Published 30 April 2024

Article views: 298

The isotopic signature of UV during bacterial reduction

Abstract:
The two step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV intermediate in the fractionation mechanism is unresolved due to the challenges associated with its chemical stability. Here, we employed the UV stabilising ligand, dpaea2-, to trap aqueous UV during UVI reduction by Shewanella oneidensis. Whilst the first reduction step from UVI to UV displayed negligible fractionation, reduction of UV to UIV revealed mass-dependent isotope fractionation (preferential reduction of the 235U), contrary to most previous observations. This surprising behaviour highlights the control that the U-coordinating ligand exerts over the balance between reactant U supply, electron transfer rate, and UIV product sequestration, suggesting that UV speciation should be considered when using U isotope ratios to reconstruct environmental redox conditions.

A.R. Brown, M. Molinas, Y. Roebbert, R. Faizova, T. Vitova, A. Sato, M. Hada, M. Abe, M. Mazzanti, S. Weyer, R. Bernier-Latmani

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 29, 45–50 | doi: 10.7185/geochemlet.2411 | Published 9 April 2024

Article views: 268

Comparative 142Nd and 182W study of MORBs and the 4.5 Gyr evolution of the upper mantle

Abstract:
New high precision Nd and W isotopic compositions were obtained on the same basalt samples from the Pacific-Antarctic Ridge. These provide the best estimate so far for the μ142Nd and μ182W values of the depleted mantle source of mid-ocean ridge basalts known as DMM. The PAR basalts yield a mean μ142Nd = −1.6 ± 5.0 (2 s.d.) and μ182W = −1.9 ± 3.5 (2 s.d.), which together with the literature data allow the isotope composition of the DMM to be constrained. The present-day DMM μ182W is 10–20 ppm lower than that of the Archean mantle. This decrease could be related to the broad incorporation of mantle plume material into the upper mantle, starting between 2.4 and 3 billion years ago, due to the onset of deep cold slab subduction, and its attendant return mantle flow.

D. Peters, H. Rizo, J. O’Neil, C. Hamelin, S.B. Shirey

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 29, 51–56 | doi: 10.7185/geochemlet.2412 | Published 11 April 2024

Article views: 259

Fractionation of Nb/Ta during subduction of carbonate-rich sediments

Abstract:
We report high precision high field strength element (HFSE) concentrations of Italian Plio-Quaternary mafic magmas. Silica-undersaturated rocks of the Roman magmatic province show high Nb/Ta. Instead, earlier silica-oversaturated rocks of the Tuscan magmatic province have unfractionated Nb/Ta. We show evidence that the high Nb/Ta of Roman magmas reflects subduction-derived, carbonate-rich melts. Similar melts may also account for high Nb/Ta in other silica-undersaturated magmas from the circum-Mediterranean (e.g., Macedonia, Bulgaria, Turkey) and the Sunda arc, previously interpreted to reflect residual rutile. We propose a genetic link between high Nb/Ta, silica-undersaturated magmas and recycling of carbonate-rich lithologies via subduction. As such, Nb/Ta can be used to trace the recycling of subducting carbonates.

A. Bragagni, R. Avanzinelli, C. Münker, F. Mastroianni, S. Conticelli

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2024) 29, 38–42 | doi: 10.7185/geochemlet.2410 | Published 5 March 2024

Article views: 231

 Top 10 most viewed articles (cumulative count of HTML views) for the last 12 months.

4.46 Ga zircons anchor chronology of lunar magma ocean

Abstract:
The crystallisation ages of lunar samples provide critical constraints on the minimum formation age of the Moon and its early evolution. Zircon crystals from Apollo 17 lunar impact melt breccia 72255 preserve ancient domains with a concordant average uranium-lead radiometric date of 4460 ± 31 Ma (Zhang et al., 2021), the oldest lunar zircon yet reported. To assess the possible mobility of radiogenic lead in zircon, which may lead to redistribution and clustering of Pb atoms that may cause a U-Pb age bias (Valley et al., 2014), we investigated a zircon grain from Zhang et al. (2021) by atom probe tomography (APT). The atomic spatial resolution analysis of individual mineral grains demonstrates the absence of nanoscale clustering of lead, which supports a 4.46 Ga ancient formation age for lunar zircon in sample 72255. This age pushes back the age of the first preserved lunar crust by ∼40 Myr and provides a minimum formation age for the Moon within 110 Myr after the formation of the solar system.

J. Greer, B. Zhang, D. Isheim, D.N. Seidman, A. Bouvier, P.R. Heck

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 27, 49–53 | doi: 10.7185/geochemlet.2334 | Published 23 October 2023

Article views: 40592

Earth’s first glaciation at 2.9 Ga revealed by triple oxygen isotopes

Abstract:
We here report the lowest (∼3 ‰ VSMOW) δ18O values for any weathering-related sedimentary rock in Earth’s history, from shales and diamictites of the Mesoarchaean Pongola Supergroup of South Africa. This volcano-sedimentary succession was deposited in a shallow epeiric sea on continental crust of the Kaapvaal Craton and includes the record of the Earth’s oldest surface glaciation. Oxygen isotope data of shales of the Mozaan Group indicate gradual climatic cooling of the surface environments that culminated in glacial conditions at ∼2.90 Ga. Mathematical inversion of measured Δ'17O and δ18O values results in δ18O values around −20 ‰ for weathering waters, suggesting cold climate conditions. These observations suggest continental weathering of the Kaapval Craton involving low δ18O meteoric waters, possibly in a near-polar position.

A. Hofmann, I.N. Bindeman

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 20–24 | doi: 10.7185/geochemlet.2319 | Published 13 June 2023

Article views: 12404

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 11447

River chemistry reveals a large decrease in dolomite abundance across the Phanerozoic

Abstract:
The abundance of dolomite in ancient carbonate sediments, and its apparent rarity today, has important implications for the coupled Ca-Mg-C-cycles in seawater and global climate. Despite its importance, there are large differences between published records of dolomite abundance vs. geologic age, mainly due to complexities in adequately sampling heterogeneous bedrock. We overcome this issue by using dissolved Mg2+ and Ca2+ measurements in rivers draining carbonate-bearing bedrock. Because rivers weather broad areas, this approach integrates the geochemical composition of much larger volumes of carbonate compared to sample based methods. The average Mg/(Ca + Mg) molar ratio in rivers declines with decreasing bedrock age, from 0.44 at ∼485 million year old (Ma) to 0.14 at ∼5 Ma, suggesting a decreasing percentage of dolomite in carbonate sequences across the Phanerozoic Eon. These data are hard to reconcile with any model that relies only upon oscillatory drivers to explain the dolomite abundance record, such as sea level or episodic expansions of ocean anoxia, and have important implications for the oceanic Mg cycle.

J.M. Husson, L.A. Coogan

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 1–6 | doi: 10.7185/geochemlet.2316 | Published 26 May 2023

Article views: 11352

Emergence of peraluminous crustal magmas and implications for the early Earth

Abstract:
Detrital zircons from the Jack Hills (JH) metasedimentary belt of Western Australia are a record of the first ∼1.5 billion years of Earth history and can be used to help reconstruct the conditions of crust formation and secular changes therein. Beginning as early as ca. 4.3 Ga, but becoming more pronounced in the mid-Archean, a peraluminous signature begins to emerge from the JH zircon record. Combined with trace elements (P, REEs) and Ti-in-zircon thermometry, this increase in peraluminosity is likely the result of deep (>7 kbar) partial melting of hydrous mafic protoliths or partial melting of metasedimentary source material. In a geodynamic context, these results may suggest a gradual shift from a vertical tectonic regime toward a horizontal tectonic regime with potential subduction-like or collisional processes creating the necessary conditions for peraluminous melt generation beginning locally at least by ∼3.6 billion years ago (Ga).

M.R. Ackerson, D. Trail, J. Buettner

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2021) 17, 50–54 | doi: 10.7185/geochemlet.2114 | Published 14 May 2021

Article views: 8216

A whole-lithosphere view of continental growth

Abstract:
Continental crust is a defining feature of Earth; yet, the mechanisms that control its growth remain hotly debated. Many approaches to estimating crustal growth focus solely on a single mineral—zircon, while constraints from the lithospheric mantle root remain largely neglected. Here, we critically examine the ability of zircon to accurately record the relative roles of juvenile crustal addition versus recycling, and present an alternative approach based on the geochemistry of crustal rock samples. The resulting model of continental crustal growth parallels, but pre-dates, the pattern of cratonic mantle lithosphere formation ages, indicating a distinct relationship between the continental crust and its mantle root. Our results indicate that continental crust and deep cratonic lithospheric roots grew progressively over ∼2.5 Gyr of Earth history, with clear temporal links to the birth of extensive lithospheric keels and establishment of continental drainage basins.

J.R. Reimink, J.H.F.L. Davies, J.-F. Moyen, D.G. Pearson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 45–49 | doi: 10.7185/geochemlet.2324 | Published 3 August 2023

Article views: 6857

Dust transport enhanced land surface weatherability in a cooling world

Abstract:
The weatherability of exposed silicate rocks drives the efficiency of climatic feedback on the geological carbon cycle through silicate weathering. However, the controls and evolution of land surface weatherability are not fully understood. Tectonically induced exposure of fresh silicates can induce a wide range of weatherability, depending on the maturity and lithology of the exhumed rocks. Here, we propose that aeolian dust has potentially been pivotal in sustaining land surface weatherability during global cooling. Our analysis of palaeoclimate simulations shows an additional transport of 1072 ± 69 Tg yr−1 of dust to regions with precipitation of more than 400 mm yr−1 during the Last Glacial Maximum compared to the pre-industrial period. As dust mainly contains fresh minerals with high surface areas, such dust transport markedly increases land surface weatherability, yielding an additional atmospheric CO2 consumption of 0.431 ± 0.030 Tmol yr−1, which would offset the reduced silicate weathering induced by weaker climatic forcing. It is suggested that a dustier world could increase global land surface weatherability, leading to a more buffered carbon cycle that sustained low atmospheric CO2 levels.

Y. Yang, A. Galy, J. Zhang, F. Lambert, M. Zhang, F. Zhang, X. Fang

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 26, 36–39 | doi: 10.7185/geochemlet.2322 | Published 6 July 2023

Article views: 5806

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

Abstract:
The effusive six months long 2014‒2015 Bárðarbunga eruption (31 August‒27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11.8 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 µg m3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.

S.R. Gíslason, G. Stefánsdóttir, M.A. Pfeffer, S. Barsotti, Th. Jóhannsson, I. Galeczka, E. Bali, O. Sigmarsson, A. Stefánsson, N.S. Keller, Á. Sigurdsson, B. Bergsson, B. Galle, V.C. Jacobo, S. Arellano, A. Aiuppa, E.B. Jónasdóttir, E.S. Eiríksdóttir, S. Jakobsson, G.H. Guðfinnsson, S.A. Halldórsson, H. Gunnarsson, B. Haddadi, I. Jónsdóttir, Th. Thordarson, M. Riishuus, Th. Högnadóttir, T. Dürig, G.B.M. Pedersen, Á. Höskuldsson, M.T. Gudmundsson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 84–93 | doi: 10.7185/geochemlet.1509 | Published 29 June 2015

Article views: 5202

The composition and weathering of the continents over geologic time

Abstract:
The composition of continental crust records the balance between construction by tectonics and destruction by physical and chemical erosion. Quantitative constraints on how igneous addition and chemical weathering have modified the continents’ bulk composition are essential for understanding the evolution of geodynamics and climate. Using novel data analytic techniques we have extracted temporal trends in sediments’ protolith composition and weathering intensity from the largest available compilation of sedimentary major element compositions: ∼15,000 samples from 4.0 Ga to the present. We find that the average Archean upper continental crust was silica-rich and had a similar compositional diversity to modern continents. This is consistent with an early Archean, or earlier, onset of plate tectonics. In the Archean, chemical weathering sequestered ∼25 % more CO2 per mass eroded for the same weathering intensity than in subsequent time periods, consistent with carbon mass balance despite higher Archean outgassing rates and more limited continental exposure. Since 2.0 Ga, over long (>0.5 Gyr) timescales, crustal weathering intensity has remained relatively constant. On shorter timescales over the Phanerozoic, weathering intensity is correlated to global climate state, consistent with a weathering feedback acting in response to changes in CO2 sources or sinks.

A.G. Lipp, O. Shorttle, E.A. Sperling, J.J. Brocks, D.B. Cole, P.W. Crockford, L. Del Mouro, K. Dewing, S.Q. Dornbos, J.F. Emmings, U.C. Farrell, A. Jarrett, B.W. Johnson, P. Kabanov, C.B. Keller, M. Kunzmann, A.J. Miller, N.T. Mills, B. O’Connell, S.E. Peters, N.J. Planavsky, S.R. Ritzer, S.D. Schoepfer, P.R. Wilby, J. Yang

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2021) 17, 21–26 | doi: 10.7185/geochemlet.2109 | Published 2 March 2021

Article views: 5143

Accessory mineral constraints on crustal evolution: elemental fingerprints for magma discrimination

Abstract:
Underexplored accessory minerals such as titanite and apatite have the potential to give insights into the nature and the petrogenesis of their host rock. Their trace element and REE-rich compositions carry a record of crystallisation history and chemical characteristics of their source. Moreover, titanite and, to a certain extent, apatite are resistant to erosion during sedimentary cycles which makes them ideal to reconstruct the history of long-eroded continental landmasses. Here we report new trace element data on apatite and titanite from granitoids of different Archean cratons and comparative granitoids from the Phanerozoic. Trace element signatures of both minerals reveal systematic chemical trends in Y, LREE and Sr contents related to the nature of their host magma, which are used to construct discrimination diagrams delineating Archean TTGs from sanukitoids, and modern adakites from S/I-type granites. By comparing Archean granitoids (TTG and sanukitoids) and their Phanerozoic counterparts (adakite and high Ba-Sr granites), we show that the robust nature of these phases makes them reliable recorders of petrogenetic information from Archean rocks, that usually have been affected by secondary processes (metamorphism, deformation, hydrothermal activity). Applied to the rock record, both phases potentially provide detailed archives of magmatic evolution through time.

E. Bruand, M. Fowler, C. Storey O. Laurent, C. Antoine, M. Guitreau, E. Heilimo, O. Nebel

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2020) 13, 7–12 | doi: 10.7185/geochemlet.2006 | Published 26 February 2020

Article views: 4976

 Top 10 most viewed articles (cumulative count of HTML views) for all time.

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1–5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 59674

4.46 Ga zircons anchor chronology of lunar magma ocean

Abstract:
The crystallisation ages of lunar samples provide critical constraints on the minimum formation age of the Moon and its early evolution. Zircon crystals from Apollo 17 lunar impact melt breccia 72255 preserve ancient domains with a concordant average uranium-lead radiometric date of 4460 ± 31 Ma (Zhang et al., 2021), the oldest lunar zircon yet reported. To assess the possible mobility of radiogenic lead in zircon, which may lead to redistribution and clustering of Pb atoms that may cause a U-Pb age bias (Valley et al., 2014), we investigated a zircon grain from Zhang et al. (2021) by atom probe tomography (APT). The atomic spatial resolution analysis of individual mineral grains demonstrates the absence of nanoscale clustering of lead, which supports a 4.46 Ga ancient formation age for lunar zircon in sample 72255. This age pushes back the age of the first preserved lunar crust by ∼40 Myr and provides a minimum formation age for the Moon within 110 Myr after the formation of the solar system.

J. Greer, B. Zhang, D. Isheim, D.N. Seidman, A. Bouvier, P.R. Heck

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2023) 27, 49–53 | doi: 10.7185/geochemlet.2334 | Published 23 October 2023

Article views: 40592

Global climate stabilisation by chemical weathering during the Hirnantian glaciation

Abstract:
Chemical weathering of silicate rocks is a primary drawdown mechanism of atmospheric carbon dioxide. The processes that affect weathering are therefore central in controlling global climate. A temperature-controlled “weathering thermostat” has long been proposed in stabilising long-term climate, but without definitive evidence from the geologic record. Here we use lithium isotopes (δ7Li) to assess the impact of silicate weathering across a significant climate-cooling period, the end-Ordovician Hirnantian glaciation (~445 Ma). We find a positive δ7Li excursion, suggestive of a silicate weathering decline. Using a coupled lithium-carbon model, we show that initiation of the glaciation was likely caused by declining CO2 degassing, which triggered abrupt global cooling, and much lower weathering rates. This lower CO2 drawdown during the glaciation allowed climatic recovery and deglaciation. Combined, the data and model provide support from the geological record for the operation of the weathering thermostat.

P.A.E. Pogge von Strandmann, A. Desrochers, M.J. Murphy, A.J. Finlay, D. Selby, T.M. Lenton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 230–237 | doi: 10.7185/geochemlet.1726 | Published 15 June 2017

Article views: 37904

Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation

Abstract:
The differentiation of Earth into a metallic core and silicate mantle left its signature on the chemical and isotopic composition of the bulk silicate Earth (BSE). This is seen in the depletion of siderophile (metal-loving) relative to lithophile (rock-loving) elements in Earth’s mantle as well as the silicon isotope offset between primitive meteorites (i.e. bulk Earth) and BSE, which is generally interpreted as a proof that Si is present in Earth’s core. Another putative light element in Earth’s core is sulphur; however, estimates of core S abundance vary significantly and, due to its volatile nature, no unequivocal S isotopic signature for core fractionation has thus far been detected. Here we present new high precision isotopic data for Cu, a chalcophile (sulphur-loving) element, which shows that Earth’s mantle is isotopically fractionated relative to bulk Earth. Results from high pressure equilibration experiments suggest that the sense of Cu isotopic fractionation between BSE and bulk Earth requires that a sulphide-rich liquid segregated from Earth’s mantle during differentiation, which likely entered the core. Such an early-stage removal of a sulphide-rich phase from the mantle presents a possible solution to the long-standing 1st terrestrial lead paradox.

P.S. Savage, F. Moynier, H. Chen, J. Siebert, J. Badro, I.S. Puchtel, G. Shofner

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 53–64 | doi: 10.7185/geochemlet.1506 | Published 4 June 2015

Article views: 31189

182W evidence for core-mantle interaction in the source of mantle plumes

Abstract:
Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth’s core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182Hf decayed entirely to 182W in the mantle after metal-silicate segregation. Therefore, the 182W isotopic composition of the Earth’s mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.

H. Rizo, D. Andrault, N.R. Bennett, M. Humayun, A. Brandon, I. Vlastelic, B. Moine, A. Poirier, M.A. Bouhifd, D.T. Murphy

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2019) 11, 6–11 | doi: 10.7185/geochemlet.1917 | Published 20 June 2019

Article views: 28745

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

Abstract:
The effusive six months long 2014‒2015 Bárðarbunga eruption (31 August‒27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11.8 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 µg m3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.

S.R. Gíslason, G. Stefánsdóttir, M.A. Pfeffer, S. Barsotti, Th. Jóhannsson, I. Galeczka, E. Bali, O. Sigmarsson, A. Stefánsson, N.S. Keller, Á. Sigurdsson, B. Bergsson, B. Galle, V.C. Jacobo, S. Arellano, A. Aiuppa, E.B. Jónasdóttir, E.S. Eiríksdóttir, S. Jakobsson, G.H. Guðfinnsson, S.A. Halldórsson, H. Gunnarsson, B. Haddadi, I. Jónsdóttir, Th. Thordarson, M. Riishuus, Th. Högnadóttir, T. Dürig, G.B.M. Pedersen, Á. Höskuldsson, M.T. Gudmundsson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 84–93 | doi: 10.7185/geochemlet.1509 | Published 29 June 2015

Article views: 27873

Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates

Abstract:
Chromium (Cr) isotopes in marine sedimentary rocks can be used as a sensitive proxy for ancient atmospheric oxygen because Cr-isotope fractionation during terrestrial weathering only occurs when pO2 exceeds a threshold value. This is a useful system when applied to rocks of mid-Proterozoic age, where fundamental questions persist about atmospheric pO2 and its relationship to biological innovation. Whereas previous studies have focused on temporally limited iron-rich sedimentary rocks, we present new Cr-isotope data from a suite of mid-Proterozoic marine carbonate rocks. Application of the Cr-isotope proxy to carbonate rocks has the potential to greatly enhance the temporal resolution of Proterozoic palaeo-redox data. Here we report positive δ53Cr values in four carbonate successions, extending the mid-Proterozoic record of Cr-isotope fractionation – and thus pO2 above threshold values – back to ~1.1 Ga. These data suggest that pO2 sufficient for the origin of animals was transiently in place well before their Neoproterozoic appearance, although uncertainty in the pO2 threshold required for Cr-isotope fractionation precludes definitive biological interpretation. This study provides a proof of concept that the Cr-isotopic composition of carbonate rocks can provide important new constraints on the oxygen content of the ancient atmosphere.

G.J. Gilleaudeau, R. Frei, A.J. Kaufman, L.C. Kah, K. Azmy, J.K. Bartley, P. Chernyavskiy, A.H. Knoll

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 178–187 | doi: 10.7185/geochemlet.1618 | Published 24 May 2016

Article views: 27202

Release of subducted sedimentary nitrogen throughout Earth’s mantle

Abstract:
The dynamic process of subduction represents the principal means to introduce chemical heterogeneities into Earth's interior. In the case of nitrogen (N) - atmosphere's most abundant gas - biological-activity converts N2 into ammonium ions (NH4+), which are chemically-bound within seafloor sediments and altered oceanic crust that comprise the subducting slab. Although some subducted N re-emerges via arc-related volcanism (Sano et al., 1998), the majority likely bypasses sub-arc depths (150-200 km) and supplies the deeper mantle (Li et al., 2007; Mitchell et al., 2010; Johnson and Goldblatt, 2015; Bebout et al., 2016). However, the fate of subducted N remains enigmatic: is it incorporated by the shallow convecting mantle - the source of ridge volcanism, or is the deeper mantle - nominally associated with mantle plumes - its ultimate repository? Here, we present N-He-Ne-Ar isotope data for oceanic basalts from the Central Indian Ridge (CIR)-Réunion plume region to address this issue. All on-axis samples with depleted MORB mantle (DMM) affinities (3He/4He = 8 ± 1 RA; Graham, 2002) have low N-isotopes (mean δ15N = -2.1 ‰), whereas those with plume-like 3He/4He display higher values (mean δ15N = 1.3 ‰). We explain these data within the framework of a new mantle reference model to predict a time-integrated net N regassing flux to the mantle of ~3.4 × 1010 mol/yr, with the plume-source mantle representing the preferential destination by a factor of 2-3. The model has implications for the present-day imbalance between N subducted at trenches and N emitted via arc-related volcanism, the N-content of Earth's early atmosphere, as well as relationships between N2 and the noble gases in mantle reservoirs, including 3He/4He-δ15N relationships in plume-derived lavas.

P.H. Barry, D.R. Hilton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 148–159 | doi: 10.7185/geochemlet.1615 | Published 3 May 2016

Article views: 27174

Molecular hydrogen in mantle minerals

Abstract:
Current models assume that hydrogen was delivered to Earth already in oxidised form as water or OH groups in minerals; similarly, it is generally believed that hydrogen is stored in the present mantle mostly as OH. Here we show by experiments at 2-7 GPa and 1100-1300 °C that, under reducing conditions, molecular hydrogen (H2) has an appreciable solubility in various upper mantle minerals. This observation suggests that during the accretion of the Earth, nebular H2 could have been delivered to the growing solid planet by direct dissolution in a magma ocean and subsequent incorporation in silicates. Moreover, the presence of dissolved molecular H2 in the minerals of the lower mantle could explain why magmas sourced in this region are rich in hydrogen, despite the fact that lower mantle minerals contain almost no OH groups.

X. Yang, H. Keppler, Y. Li

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 160–168 | doi: 10.7185/geochemlet.1616 | Published 18 March 2016

Article views: 25535

Rapid response of silicate weathering rates to climate change in the Himalaya

Abstract:
Chemical weathering of continental rocks plays a central role in regulating the carbon cycle and the Earth's climate (Walker et al., 1981; Berner et al., 1983), accounting for nearly half the consumption of atmospheric carbon dioxide globally (Beaulieu et al., 2012). However, the role of climate variability on chemical weathering is still strongly debated. Here we focus on the Himalayan range and use the lithium isotopic composition of clays in fluvial terraces to show a tight coupling between climate change and chemical weathering over the past 40 ka. Between 25 and 10 ka ago, weathering rates decrease despite temperature increase and monsoon intensification. This suggests that at this timescale, temperature plays a secondary role compared to runoff and physical erosion, which inhibit chemical weathering by accelerating sediment transport and act as fundamental controls in determining the feedback between chemical weathering and atmospheric carbon dioxide.

A. Dosseto, N. Vigier, R. Joannes-Boyau, I. Moffat, T. Singh, P. Srivastava

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 10–19 | doi: 10.7185/geochemlet.1502 | Published 20 February 2015

Article views: 25165