Geochemical Perspectives Letters is an internationally peer-reviewed journal of the European Association of Geochemistry,
produced by and for the geochemical community:
Open access
Short (3000 words all inclusive)
Highest-quality articles spanning geochemical sciences

Latest articles

 Top 10 most viewed articles (cumulative count of HTML views and PDF downloads) for all time. Rankings are updated hourly.

Global climate stabilisation by chemical weathering during the Hirnantian glaciation

Abstract:
Chemical weathering of silicate rocks is a primary drawdown mechanism of atmospheric carbon dioxide. The processes that affect weathering are therefore central in controlling global climate. A temperature-controlled “weathering thermostat” has long been proposed in stabilising long-term climate, but without definitive evidence from the geologic record. Here we use lithium isotopes (δ7Li) to assess the impact of silicate weathering across a significant climate-cooling period, the end-Ordovician Hirnantian glaciation (~445 Ma). We find a positive δ7Li excursion, suggestive of a silicate weathering decline. Using a coupled lithium-carbon model, we show that initiation of the glaciation was likely caused by declining CO2 degassing, which triggered abrupt global cooling, and much lower weathering rates. This lower CO2 drawdown during the glaciation allowed climatic recovery and deglaciation. Combined, the data and model provide support from the geological record for the operation of the weathering thermostat.

P.A.E. Pogge von Strandmann, A. Desrochers, M.J. Murphy, A.J. Finlay, D. Selby, T.M. Lenton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2017) 3, 230 – 237 | doi: 10.7185/geochemlet.1726 | Published 15 June 2017

Article views: 25,144

Microplastics contaminate the deepest part of the world’s ocean

Abstract:
Millions of metric tons of plastics are produced annually and transported from land to the oceans. Finding the fate of the plastic debris will help define the impacts of plastic pollution in the ocean. Here, we report the abundances of microplastic in the deepest part of the world’s ocean. We found that microplastic abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, several times higher than those in open ocean subsurface water. Moreover, microplastic abundances in hadal sediments of the Mariana Trench vary from 200 to 2200 pieces per litre, distinctly higher than those in most deep sea sediments. These results suggest that manmade plastics have contaminated the most remote and deepest places on the planet. The hadal zone is likely one of the largest sinks for microplastic debris on Earth, with unknown but potentially damaging impacts on this fragile ecosystem.

X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2018) 9, 1 – 5 | doi: 10.7185/geochemlet.1829 | Published 27 November 2018

Article views: 22,719

Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation

Abstract:
The differentiation of Earth into a metallic core and silicate mantle left its signature on the chemical and isotopic composition of the bulk silicate Earth (BSE). This is seen in the depletion of siderophile (metal-loving) relative to lithophile (rock-loving) elements in Earth’s mantle as well as the silicon isotope offset between primitive meteorites (i.e. bulk Earth) and BSE, which is generally interpreted as a proof that Si is present in Earth’s core. Another putative light element in Earth’s core is sulphur; however, estimates of core S abundance vary significantly and, due to its volatile nature, no unequivocal S isotopic signature for core fractionation has thus far been detected. Here we present new high precision isotopic data for Cu, a chalcophile (sulphur-loving) element, which shows that Earth’s mantle is isotopically fractionated relative to bulk Earth. Results from high pressure equilibration experiments suggest that the sense of Cu isotopic fractionation between BSE and bulk Earth requires that a sulphide-rich liquid segregated from Earth’s mantle during differentiation, which likely entered the core. Such an early-stage removal of a sulphide-rich phase from the mantle presents a possible solution to the long-standing 1st terrestrial lead paradox.

P.S. Savage, F. Moynier, H. Chen, J. Siebert, J. Badro, I.S. Puchtel, G. Shofner

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 53 – 64 | doi: 10.7185/geochemlet.1506 | Published 4 June 2015

Article views: 19,754

Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates

Abstract:
Chromium (Cr) isotopes in marine sedimentary rocks can be used as a sensitive proxy for ancient atmospheric oxygen because Cr-isotope fractionation during terrestrial weathering only occurs when pO2 exceeds a threshold value. This is a useful system when applied to rocks of mid-Proterozoic age, where fundamental questions persist about atmospheric pO2 and its relationship to biological innovation. Whereas previous studies have focused on temporally limited iron-rich sedimentary rocks, we present new Cr-isotope data from a suite of mid-Proterozoic marine carbonate rocks. Application of the Cr-isotope proxy to carbonate rocks has the potential to greatly enhance the temporal resolution of Proterozoic palaeo-redox data. Here we report positive δ53Cr values in four carbonate successions, extending the mid-Proterozoic record of Cr-isotope fractionation – and thus pO2 above threshold values – back to ~1.1 Ga. These data suggest that pO2 sufficient for the origin of animals was transiently in place well before their Neoproterozoic appearance, although uncertainty in the pO2 threshold required for Cr-isotope fractionation precludes definitive biological interpretation. This study provides a proof of concept that the Cr-isotopic composition of carbonate rocks can provide important new constraints on the oxygen content of the ancient atmosphere.

G.J. Gilleaudeau, R. Frei, A.J. Kaufman, L.C. Kah, K. Azmy, J.K. Bartley, P. Chernyavskiy, A.H. Knoll

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 178 – 187 | doi: 10.7185/geochemlet.1618 | Published 24 May 2016

Article views: 18,424

Release of subducted sedimentary nitrogen throughout Earth’s mantle

Abstract:
The dynamic process of subduction represents the principal means to introduce chemical heterogeneities into Earth's interior. In the case of nitrogen (N) - atmosphere's most abundant gas - biological-activity converts N2 into ammonium ions (NH4+), which are chemically-bound within seafloor sediments and altered oceanic crust that comprise the subducting slab. Although some subducted N re-emerges via arc-related volcanism (Sano et al., 1998), the majority likely bypasses sub-arc depths (150-200 km) and supplies the deeper mantle (Li et al., 2007; Mitchell et al., 2010; Johnson and Goldblatt, 2015; Bebout et al., 2016). However, the fate of subducted N remains enigmatic: is it incorporated by the shallow convecting mantle - the source of ridge volcanism, or is the deeper mantle - nominally associated with mantle plumes - its ultimate repository? Here, we present N-He-Ne-Ar isotope data for oceanic basalts from the Central Indian Ridge (CIR)-Réunion plume region to address this issue. All on-axis samples with depleted MORB mantle (DMM) affinities (3He/4He = 8 ± 1 RA; Graham, 2002) have low N-isotopes (mean δ15N = -2.1 ‰), whereas those with plume-like 3He/4He display higher values (mean δ15N = 1.3 ‰). We explain these data within the framework of a new mantle reference model to predict a time-integrated net N regassing flux to the mantle of ~3.4 × 1010 mol/yr, with the plume-source mantle representing the preferential destination by a factor of 2-3. The model has implications for the present-day imbalance between N subducted at trenches and N emitted via arc-related volcanism, the N-content of Earth's early atmosphere, as well as relationships between N2 and the noble gases in mantle reservoirs, including 3He/4He-δ15N relationships in plume-derived lavas.

P.H. Barry, D.R. Hilton

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 148 – 159 | doi: 10.7185/geochemlet.1615 | Published 3 May 2016

Article views: 18,159

Molecular hydrogen in mantle minerals

Abstract:
Current models assume that hydrogen was delivered to Earth already in oxidised form as water or OH groups in minerals; similarly, it is generally believed that hydrogen is stored in the present mantle mostly as OH. Here we show by experiments at 2-7 GPa and 1100-1300 °C that, under reducing conditions, molecular hydrogen (H2) has an appreciable solubility in various upper mantle minerals. This observation suggests that during the accretion of the Earth, nebular H2 could have been delivered to the growing solid planet by direct dissolution in a magma ocean and subsequent incorporation in silicates. Moreover, the presence of dissolved molecular H2 in the minerals of the lower mantle could explain why magmas sourced in this region are rich in hydrogen, despite the fact that lower mantle minerals contain almost no OH groups.

X. Yang, H. Keppler, Y. Li

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 160 – 168 | doi: 10.7185/geochemlet.1616 | Published 18 March 2016

Article views: 15,890

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

Abstract:
The effusive six months long 2014‒2015 Bárðarbunga eruption (31 August‒27 February) was the largest in Iceland for more than 200 years, producing 1.6 ± 0.3 km3 of lava. The total SO2 emission was 11.8 ± 5 Mt, more than the amount emitted from Europe in 2011. The ground level concentration of SO2 exceeded the 350 µg m3 hourly average health limit over much of Iceland for days to weeks. Anomalously high SO2 concentrations were also measured at several locations in Europe in September. The lowest pH of fresh snowmelt at the eruption site was 3.3, and 3.2 in precipitation 105 km away from the source. Elevated dissolved H2SO4, HCl, HF, and metal concentrations were measured in snow and precipitation. Environmental pressures from the eruption and impacts on populated areas were reduced by its remoteness, timing, and the weather. The anticipated primary environmental pressure is on the surface waters, soils, and vegetation of Iceland.

S.R. Gíslason, G. Stefánsdóttir, M.A. Pfeffer, S. Barsotti, Th. Jóhannsson, I. Galeczka, E. Bali, O. Sigmarsson, A. Stefánsson, N.S. Keller, Á. Sigurdsson, B. Bergsson, B. Galle, V.C. Jacobo, S. Arellano, A. Aiuppa, E.B. Jónasdóttir, E.S. Eiríksdóttir, S. Jakobsson, G.H. Guðfinnsson, S.A. Halldórsson, H. Gunnarsson, B. Haddadi, I. Jónsdóttir, Th. Thordarson, M. Riishuus, Th. Högnadóttir, T. Dürig, G.B.M. Pedersen, Á. Höskuldsson, M.T. Gudmundsson

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2015) 1, 84 – 93 | doi: 10.7185/geochemlet.1509 | Published 29 June 2015

Article views: 14,961

182W evidence for core-mantle interaction in the source of mantle plumes

Abstract:
Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth’s core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182Hf decayed entirely to 182W in the mantle after metal-silicate segregation. Therefore, the 182W isotopic composition of the Earth’s mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.

H. Rizo, D. Andrault, N.R. Bennett, M. Humayun, A. Brandon, I. Vlastelic, B. Moine, A. Poirier, M.A. Bouhifd, D.T. Murphy

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2019) 11, 6 – 11 | doi: 10.7185/geochemlet.1917 | Published 20 June 2019

Article views: 14,361

A cometary origin for martian atmospheric methane

Abstract:
Methane has been reported repeatedly in the martian atmosphere but its origin remains an obstinate mystery. Possible sources include aqueous alteration of igneous rocks, release from ancient deposits of methane/water ice clathrates, infall from exogenous sources such as background interplanetary dust, or biological activity. All of these sources are problematic, however. We hypothesise that delivery of cometary material includes meteor outbursts, commonly known as “meteor showers”, may explain martian methane plumes. Correlations exist between the appearance of methane and near-approaches between Mars and cometary orbits. Additional correlations are seen between these interactions and the appearance of high-altitude dust clouds on Mars, showing that large amounts of material may be deposited on Mars during these encounters. Methane is released by UV breakdown of delivered cometary material. This hypothesis is testable in future Mars/cometary encounters. A cometary origin for methane would reveal formation of methane through processes that are separate from any geological or biological processes on Mars.

M. Fries, A. Christou, D. Archer, P. Conrad, W. Cooke, J. Eigenbrode, I.L. ten Kate, M. Matney, P. Niles, M. Sykes, A. Steele, A. Treiman

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 10 – 23 | doi: 10.7185/geochemlet.1602 | Published 2 December 2015

Article views: 13,856

Carbon isotope discrimination in C3 land plants is independent of natural variations in pCO2

Abstract:
The δ13C of terrestrial C3 plant tissues and soil organic matter is important for understanding the carbon cycle, inferring past climatic and ecological conditions, and predicting responses of vegetation to future climate change. Plant δ13C depends on the δ13C of atmospheric CO2 and mean annual precipitation (MAP), but an unresolved decades-long debate centres on whether terrestrial C3 plant δ13C responds to pCO2. In this study, the pCO2-dependence of C3 land plant δ13C was tested using isotopic records from low- and high-pCO2 times spanning historical through Eocene data. Historical data do not resolve a clear pCO2-effect (-1.2 ± 1.0 to 0.6 ± 1.0 ‰/100 ppmv). Organic carbon records across the Pleistocene-Holocene transition are too affected by changes in MAP, carbon sources, and potential differential degradation to quantify pCO2-effects directly, but limits of ≤1.0 ‰/100 ppmv or ~0 ‰/100 ppmv are permissible. Fossil collagen and tooth enamel data constrain pCO2-effects most tightly to -0.03 ± 0.13 and -0.03 ± 0.24 ‰/100 ppmv between 200 and 700 ppmv. Combining all constraints yields a preferred value of 0.0 ± 0.3 ‰/100 ppmv (2 s.e.). Recent models of pCO2-dependence imply unrealistic MAP for Cenozoic records.

M.J. Kohn

HTML | PDF | PDF + SI

Geochem. Persp. Let. (2016) 2, 35 – 43 | doi: 10.7185/geochemlet.1604 | Published 8 January 2016

Article views: 13,722