Back to article

Figures and Tables

Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland

S.R. Gíslason1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

G. Stefánsdóttir2,

2Icelandic Meteorological Office, Bústaðavegi 7-9, 108 Reykjavík, Iceland

M.A. Pfeffer2,

3Environment Agency of Iceland, Suðurlandsbraut 24, 108 Reykjavík, Iceland

S. Barsotti2,

2Icelandic Meteorological Office, Bústaðavegi 7-9, 108 Reykjavík, Iceland

Th. Jóhannsson3,

3Environment Agency of Iceland, Suðurlandsbraut 24, 108 Reykjavík, Iceland

I. Galeczka1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

E. Bali1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

O. Sigmarsson1,4,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland
4Laboratoire Magmas et Volcans, Observatoire de Physique du Globe de Clermont-Ferrand, CNRS - Université Blaise Pascal - IRD, 5 rue Kessler, 63038 Clermont-Ferrand Cedex, France

A. Stefánsson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

N.S. Keller1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

Á. Sigurdsson2,

2Icelandic Meteorological Office, Bústaðavegi 7-9, 108 Reykjavík, Iceland

B. Bergsson2,5,

2Icelandic Meteorological Office, Bústaðavegi 7-9, 108 Reykjavík, Iceland
5Università di Palermo, 90123 Palermo, Italy

B. Galle6,

6Chalmers University of Technology, Department of Earth and Space Sciences, Hörsalsvägen 11, 412 96 Gothenburg, Sweden

V.C. Jacobo6,

6Chalmers University of Technology, Department of Earth and Space Sciences, Hörsalsvägen 11, 412 96 Gothenburg, Sweden

S. Arellano6,

6Chalmers University of Technology, Department of Earth and Space Sciences, Hörsalsvägen 11, 412 96 Gothenburg, Sweden

A. Aiuppa5,

5Università di Palermo, 90123 Palermo, Italy

E.B. Jónasdóttir2,

2Icelandic Meteorological Office, Bústaðavegi 7-9, 108 Reykjavík, Iceland

E.S. Eiríksdóttir1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

S. Jakobsson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

G.H. Guðfinnsson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

S.A. Halldórsson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

H. Gunnarsson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

B. Haddadi4,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

I. Jónsdóttir1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

Th. Thordarson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

M. Riishuus1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

Th. Högnadóttir1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

T. Dürig1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

G.B.M. Pedersen1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

Á. Höskuldsson1,

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

M.T. Gudmundsson1

1Nordvulk, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

Affiliations  |  Corresponding Author  |  Cite as

Gíslason, S.R., Stefánsdóttir, G., Pfeffer, M.A., Barsotti, S., Jóhannsson, Th., Galeczka, I., Bali, E., Sigmarsson, O., Stefánsson, A., Keller, N.S., Sigurdsson, Á., Bergsson, B., Galle, B., Jacobo, V.C., Arellano, S., Aiuppa, A., Jónasdóttir, E.B., Eiríksdóttir, E.S., Jakobsson, S., Guðfinnsson, G.H., Halldórsson, S.A., Gunnarsson, H., Haddadi, B., Jónsdóttir, I., Thordarson, Th., Riishuus, M., Högnadóttir, Th., Dürig, T., Pedersen, G.B.M., Höskuldsson, Á., Gudmundsson, M.T. (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem. Persp. Let. 1, 84-93.

Geochemical Perspectives Letters v1, n1  |  doi: 10.7185/geochemlet.1509
Received 15 March 2015  |  Accepted 15 June 2015  |  Published 29 June 2015
Copyright © 2015 European Association of Geochemistry



Figure 1 The modelled SO2 dispersion during the eruption, presented as the frequency of hourly concentrations higher than the 350 µg m3 health limit. The monitoring stations mentioned in the text are also shown.
Back to article | Download in Powerpoint


Figure 2 The SO2 concentration in air at four of the permanent gas monitoring stations presented in Figure 1. The 350 µg m3 health limit is shown by the red horizontal line. The grey vertical lines mark the eruption period. Permanent SO2 monitoring started at Höfn 28 October 2014.
Back to article | Download in Powerpoint


Figure 3  The pH of precipitation at Borgir during the eruption (Figs. 1 and S-1). The blue dashed line represents the average pH (5.8) and the shaded background the pH range for the eruption free period 2005-2009 at the Írafoss monitoring station (Figs. 1 and S-1). The two grey dashed lines depict the variation in pH during the eruption from the monitoring stations shown in Figure S-1.
Back to article | Download in Powerpoint


Figure 4 The Cl, SO4, F, and Al concentration in melted snow (Fig. S-1) versus in situ pH (0.1 °C). The black dot represents the pH (5.54) of pure water equilibrated with 395 ppmv of CO2 at 0.1 °C.
Back to article | Download in Powerpoint

Back to article

Supplementary Figures and Tables


Figure S-1 Location of the various monitoring stations in Iceland. The stations mentioned in text are shown in Figure 1.
Back to article | Download in Powerpoint


Figure S-2 The SO2 dispersion during the eruption modelled by CALPUFF including the effect of wet deposition presented as frequency of hourly concentrations higher than the 350 µg m3 health limit. The monitoring stations mentioned in the text are also shown.
Back to article | Download in Powerpoint


Figure S-3 The wind velocity distribution measured at 10.5 m height from the ground at the Upptyppingar weather station (Fig. S-2). The box plots show the median, lower and upper quartiles (25 % and 75 %) as well as minimum, maximum and outliers. The blue diamonds depict the calculated monthly average wind velocity for the long term time series (1 March 2005‒28 February 2014), the red diamonds the calculated monthly average wind velocity during the eruption period (1 September 2014‒27 February 2015) and the green diamonds the Harmonie 850 hPa Numerical Weather Prediction (NWP) wind velocity at about 1200‒1500 m a.s.l. over Upptyppingar during the eruption.
Back to article | Download in Powerpoint

Table S-1 Total magma effusion and gas emissions, average rates, first weeks’ rates, and December‒January rates.
 TotalAverageFirst weeks (2.5 times average)December-January
 MagmaPetrologicDOASMagmaPetrologicDOASMagmaPetrologicDOASMagmaPetrologicDOAS
  
MultiGAS 
MultiGAS 
MultiGAS 
MultiGAS
 MtMtMtkg s-1kg s-1kg s-1kg s-1kg s-1kg s-1kg s-1kg s-1kg s-1
Magma4200 2.69E+05 6.71E+05 1.75E+05 
H2O 16.8284 10701.81E+04 26905.21E+04 6981.15E+04
SO2 10.711.8 684754 17101380 445546
CO2 6.335.60 405358 10101500 263187
HCl 0.10  6.4  16.0  4.2 
HF BD  BD       

Total magma volume, 1.6 ± 0.3 km3, density; 2600 kg m-3, the total mass erupted during the eruption, after 181 effusion days was (4.2 ± 0.8) · 1012kg. The average magma flow rate for the 181 days was 100 m3 s-1 with the corresponding mass flow rate being 2.7 · 105 kg s-1. During the first weeks, the flow rate was two to three times the average (2.5), while 50-80 m3 s-1 occurred in December and January (0.65 times the average), followed by gradual decline in February leading to the termination on 27 February. The error on the effusion rate is 20 %, for the petrologic gas fluxes it is; H2O 22 %, SO2 28 %, CO2 26 %, HCl ~100 % and HF was below detection (BD). The error of SO2 measured by DOAS is 38 % and the one for CO2 and H2O measured by the combination of DOAS and MultiGas is 65 % and 69 % respectively.

Back to article | Download in Excel

Table S-2 SO2 ground‒level gas concentrations in air in Europe.
CountryStation nameLatitudeLongitudeHeight above sea levelDateDistance from the eruptionHighest one hour SO2 peak
Ireland1Ennis52.84-916 m06.09.20141407 km498 µg/m3
Ireland1Portlaoise53.04-7.2998 m06.09.20141420 km343 µg/m3
Netherlands2Philippine51.293.755 m22.09.20141905 km82 µg/m3
Belgium3Ghent region51.153.8112 m22.09.20141931 km87 µg/m3
Britain4Wicken Fen52.30.293 m22.09.20141701 km96 µg/m3
Austria5Masenberg47.3515.891210 m22.09.20142754 km235 µg/m3

1Preliminary data from the Irish Environmental Protection Agency.
2Preliminary data from the National Institute for Public Health and the Environment.
3Preliminary data from the Belgian Interregional Environment Agency.
4Preliminary data from the Department for Environment Food & Rural Affairs.
5Preliminary data from the Environment Agency Austria.

Back to article | Download in Excel