Back to article

Figures and tables

Magma dynamics of ancient Mt. Etna inferred from clinopyroxene isotopic and trace element systematics

S.A. Miller1,

1Department of Earth Sciences, University of New Hampshire, 56 College Road, Durham, NH 03824, USA

M. Myers1,2,

1Department of Earth Sciences, University of New Hampshire, 56 College Road, Durham, NH 03824, USA
2Department of Geological Sciences, 1272 University of Oregon, Eugene, OR 97403, USA

M.F. Fahnestock1,

1Department of Earth Sciences, University of New Hampshire, 56 College Road, Durham, NH 03824, USA

J. Bryce1,

1Department of Earth Sciences, University of New Hampshire, 56 College Road, Durham, NH 03824, USA

J. Blichert-Toft3

3Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, CNRS UMR 5276, 46 Allée d’Italie, 69007 Lyon, France

Affiliations  |  Corresponding Author  |  Cite as  |  Funding information

Miller, S.A., Myers, M., Fahnestock, M.F., Bryce, J.G., Blichert-Toft, J. (2017) Magma dynamics of ancient Mt. Etna inferred from clinopyroxene isotopic and trace element systematics. Geochem. Persp. Let. 4, 47-52.

NSF grant EAR-1057611 to JGB and SAM, the UNH Undergraduate Research Opportunities Program to MM, and the French Agence Nationale de la Recherche (grant ANR-10-BLANC-0603 M&Ms – Mantle Melting – Measurements, Models, Mechanisms) to JBT.

Geochemical Perspectives Letters v4  |  doi: 10.7185/geochemlet.1735
Received 16 March 2017  |  Accepted 3 August 2017  |  Published 28 September 2017
Copyright © 2017 European Association of Geochemistry




Figure 1 (a) Ce contents of TSC cpx as a function of single-cpx pressure estimates (1σ uncertainty) superimposed on Etna stratigraphy (after Spilliaert et al., 2006

Spilliaert, N., Allard, P., Métrich, N., Sobolev, A.V. (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research 111, B04203.

). (b) Proportions of ancient Etna barometry from this study and previous work (cf. Supplementary Information, n = 287). (c) TSC cpx and 2001 eruption cpx (Viccaro et al., 2006

Viccaro, M., Ferlito, C., Cortesogno, L., Cristofolini, R., Gaggero, L. (2006) Magma mixing during the 2001 event at Mount Etna (Italy): effects on the eruptive dynamics. Journal of Volcanology and Geothermal Research 149, 139–159.

) shown with Hyblean pyroxenite and peridotite cpx fields (Correale et al., 2012

Correale, A., Martelli, M., Paonita, A., Rizzo, A., Brusca, L., Scribano, V. (2012) New evidence of mantle heterogeneity beneath the Hyblean Plateau (southeast Sicily, Italy) as inferred from noble gases and geochemistry of ultramafic xenoliths. Lithos 132–133, 70–81.

, and references therein). Isobaric cpx fractionation modelling for peridotite melt (solid lines) and pyroxenite melt (dashed lines) at 1.0 (black), 0.6 (grey), and 0.2 (blue) GPa performed using alphaMELTS (Smith and Asimow, 2005

Smith, P.M., Asimow, P.D. (2005) Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochemistry Geophysics Geosystems 6, Q02004.

); conditions described in Supplementary Information. Fractionation of apatite, well known to incorporate REEs, is modelled in purple using the partitioning of Prowatke and Klemme (2006)

Prowatke, S., Klemme, S. (2006) Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta 70, 4513–4527.

. Ol+cpx±opx+sp is present at the start of both trends, though olivine drops out at T < ~1100 °C for pyroxenite melt.
Back to article | Download in Powerpoint


Figure 2 Ancient Etna cpx and WR data. (a) εHf vs. εNd for recent and historic Etna and the Mediterranean region. Historic Etna, mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) fields from Lassiter et al., 2003

Lassiter, J.C., Blichert-Toft, J., Hauri, E.H., Barsczus, H.G. (2003) Isotope and trace element variations in lavas from Raivavae and Rapa, Cook‚ Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology 202, 115–138.

; Stracke et al., 2003

Stracke, A., Bizimis, M., Salters, V.J.M. (2003) Recycling oceanic crust: Quantitative constraints. Geochemistry Geophysics Geosystems 4, 8003.

; Gaffney et al., 2004

Gaffney, A.M., Nelson, B.K., Blichert-Toft, J. (2004) Geochemical constraints on the role of oceanic lithosphere in intra-volcano heterogeneity at West Maui, Hawaii. Journal of Petrology 45, 1663–1687.

; Huang et al., 2005

Huang, S., Frey, F.A., Blichert-Toft, J., Fodor, R.V., Bauer, G.R., Xu, G. (2005) Enriched components in the Hawaiian plume: Evidence from Kahoolawe Volcano, Hawaii. Geochemistry Geophysics Geosystems 6, Q11006.

; Xu et al., 2007

Xu, G., Frey, F.A., Clague, D.A., Abouchami, W., Blichert-Toft, J., Cousens, B., Weisler, M. (2007) Geochemical characteristics of West Molokai shield-and postshield-stage lavas: Constraints on Hawaiian plume models. Geochemistry Geophysics Geosystems 8, Q08G21.

; Sims et al., 2008

Sims, K.W.W., Blichert-Toft, J., Kyle, P.R., Pichat, S., Gauthier, P.-J., Blusztajn, J., Kelly, P., Ball, L., Layne, G. (2008) A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research 177, 606–618.

; Blichert-Toft and Albarède, 2009

Blichert-Toft, J., Albarède, F. (2009) Mixing of isotopic heterogeneities in the Mauna Kea plume conduit. Earth and Planetary Science Letters 282, 190–200.

; Yamasaki et al., 2009

Yamasaki, S., Kani, T., Hanan, B.B., Tagami, T. (2009) Isotopic geochemistry of Hualalai shield-stage tholeiitic basalts from submarine North Kona region, Hawaii. Journal of Volcanology and Geothermal Research 185, 223–230.

; Garcia et al., 2010

Garcia, M.O., Swinnard, L., Weis, D., Greene, A.R., Tagami, T., Sano, H., Gandy, C.E. (2010) Petrology, geochemistry and geochronology of Kaua ‘i Lavas over 4· 5 Myr: Implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. Journal of Petrology 51, 1507–1540.

; Peate et al., 2010

Peate, D.W., Breddam, K., Baker, J.A., Kurz, M.D., Barker, A.K., Prestvik, T., Grassineau, N., Skovgaard, A.C. (2010) Compositional characteristics and spatial distribution of enriched Icelandic mantle components. Journal of Petrology 51, 1447–1475.

; Chekol et al., 2011

Chekol, T.A., Kobayashi, K., Yokoyama, T., Sakaguchi, C., Nakamura, E. (2011) Timescales of magma differentiation from basalt to andesite beneath Hekla Volcano, Iceland: Constraints from U-series disequilibria in lavas from the last quarter-millennium flows. Geochimica et Cosmochimica Acta 75, 256–283.

; Salters et al., 2011

Salters, V.J.M., Mallick, S., Hart, S.R., Langmuir, C.E., Stracke, A. (2011) Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochemistry Geophysics Geosystems 12, Q08001.

; Viccaro et al., 2011

Viccaro, M., Nicotra, E., Millar, I.L., Cristofolini, R. (2011) The magma source at Mount Etna volcano: Perspectives from the Hf isotope composition of historic and recent lavas. Chemical Geology 281, 343–351.

); mantle components from Zindler and Hart, 1986

Zindler, A., Hart, S. (1986) Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571.

; Salters and White, 1998

Salters, V.J.M., White, W.M. (1998) Hf isotope constraints on mantle evolution. Chemical Geology 145, 447–460.

; Workman et al., 2004

Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M., Staudigel, H. (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochemistry Geophysics Geosystems 5, Q04008.

; Stracke et al., 2005

Stracke, A., Hofmann, A.W., Hart, S.R. (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochemistry Geophysics Geosystems 6, Q05007.

; Workman and Hart, 2005

Workman, R.K., Hart, S.R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 53–72.

. Hafnium isotopic values for Italian sediments (Conticelli et al., 2002

Conticelli, S., D'Antonio, M., Pinarelli, L., Civetta, L. (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr‚ Nd‚ Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology 74,189–222.

; Brems et al., 2013

Brems, D., Ganio, M., Latruwe, K., Balcaen, L., Carremans, M., Gimeno, D., Silvestri, A., Vanhaecke, F., Muchez, P., Degryse, P. (2013) Isotopes on the beach, part 2: neodymium isotopic analysis for the provenancing of Roman glass-making. Archaeometry 55, 449–464.

) are calculated from Nd isotopic data and both cases following the seawater array (SA) and the terrestrial array (TA) of Vervoort et al. (2011)

Vervoort, J.D., Plank, T., Prytulak, J. (2011) The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta 75, 5903–5926.

are shown. (b) 208Pb/204Pb vs. 206Pb/204Pb shown with OIB and mid-ocean ridge basalt (MORB) fields, historic Etna (Viccaro and Cristofolini, 2008

Viccaro, M., Cristofolini, R. (2008) Nature of mantle heterogeneity and its role in the short-term geochemical and volcanological evolution of Mt. Etna (Italy). Lithos 105, 272–288.

) and Hyblean Plateau field from Trua et al. (1998)

Trua, T., Esperança, S., Mazzuoli, R. (1998) The evolution of the lithospheric mantle along the N. African Plate: geochemical and isotopic evidence from the tholeiitic and alkaline volcanic rocks of the Hyblean plateau, Italy. Contributions to Mineralogy and Petrology 131, 307–322.

. Italian crustal values from Conticelli et al. (2002)

Conticelli, S., D'Antonio, M., Pinarelli, L., Civetta, L. (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr‚ Nd‚ Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology 74,189–222.

. External reproducibility is conservatively set at 0.01 for 206Pb/204Pb and 0.02 for 208Pb/204Pb.
Back to article | Download in Powerpoint

Back to article

Supplementary Figures and Tables



Figure S-1 Location of Timpe Santa Caterina outcrop on base map from GeoMapApp (http://www.geomapapp.org; Ryan et al., 2009). Major geologic features from Rosenbaum and Lister (2004). Stratigraphy based on Corsaro et al. (2002) with section base at sea level (0 m). Dates (*) from Gillot et al. (1994).
Back to article | Download in Powerpoint


Figure S-2 Back scattered electron images of representative clinopyroxene grains from TSC lavas with laser ablation spots (Alfred University electron microprobe).
Back to article | Download in Powerpoint


Table S-1 Electron microprobe analyses of TSC* clinopyroxene LA-ICP-MS laser spots. All iron reported as FeO. Operating conditions used at the University of Oregon (UO) and Massachusetts Institute of Technology (MIT) facilities were 15 keV accelerating voltage and 10 nA beam current, with all analyses using a focused beam of ~1 microns and 30 s count times. Data were reduced using the CITZAF correction procedure of Armstrong (1995). The few totals lower than 98 wt. % have been omitted. MIT JEOL JXA-8200 electron microprobe uncertainties (1σ) are calculated from the standard deviation of replicate analyses of the DJ35 diopside-jadeite glass standard and several points inferred from back scattered electron imaging to be from the same clinopyroxene crystal growth zone.
Analyses (wt. %) near laser spots TSC2_G1_3, TSC_G3_1, TSC2_G4_2, TSC7_G2_2, and TSC9_G5_2 totalled <98 wt. %. CaO abundances of the nearest same-grain spot were used to calibrate trace element concentrations (from TSC2_G1_2, TSC2_G3_2, TSC2_G4_1, TSC7_G2_1, and TSC9_G5_2, respectively).

TSC2_G1_11 σ
TSC2_G1_21 σ
TSC2_G1_41 σ
TSC2_G3_21 σ
TSC2_G3_31 σ

SiO246.190.10
46.070.10
47.400.15
49.740.10
49.770.10
TiO21.780.03
1.960.03
2.020.01
0.950.02
0.940.02
Al2O37.080.04
7.460.04
7.670.03
3.780.03
4.060.03
FeO8.700.16
9.220.16
8.990.04
8.230.15
7.850.15
MnO0.130.01
0.150.01
0.170.01
0.170.01
0.180.01
MgO12.760.05
12.530.05
11.960.05
14.710.06
14.430.06
CaO21.190.07
20.930.07
20.870.15
20.980.07
21.320.07
Na2O0.590.03
0.570.03
0.490.02
0.540.03
0.450.03
K2O0.010.01
0.000.01
0.010.01
0.010.01
0.010.01
Cr2O30.000.03
0.020.03
0.040.01
0.040.03
0.000.03
TOTAL98.43

98.91

99.62

99.14

98.99


TSC2_G3_41 σ
TSC2_G3_51 σ
TSC2_G3_61 σ
TSC2_G4_11 σ
TSC2_G2_11 σ

SiO248.410.10
48.810.10
48.210.10
48.030.10
47.130.10
TiO21.300.02
1.470.02
2.020.03
1.400.02
1.640.02
Al2O35.500.04
4.870.03
5.810.04
6.990.04
6.380.04
FeO8.650.16
7.790.15
8.330.15
7.060.14
8.620.16
MnO0.140.01
0.160.01
0.170.01
0.060.01
0.140.01
MgO13.580.06
13.800.06
13.070.05
13.400.06
13.000.05
CaO21.030.07
21.160.07
21.190.07
21.990.07
21.360.07
Na2O0.560.03
0.580.03
0.520.03
0.400.03
0.740.04
K2O0.010.01
0.000.01
0.000.01
0.010.01
0.000.01
Cr2O30.000.03
0.010.03
0.000.00
0.140.03
0.010.03
TOTAL99.18

98.65

99.31

99.49

99.02


TSC2_G2_21 σ
TSC2_G2_31 σ
TSC2_G8_11 σ
TSC2_G8_21 σ
TSC7_G2_11 σ

SiO247.510.10
48.040.10
47.340.10
47.470.10
47.370.10
TiO21.420.02
1.470.02
1.630.02
1.680.03
1.860.03
Al2O36.650.04
6.730.04
6.420.04
6.370.04
7.160.04
FeO8.230.15
8.110.15
8.620.16
8.330.15
7.830.15
MnO0.120.01
0.130.01
0.150.01
0.140.01
0.120.01
MgO13.180.06
13.200.06
12.610.05
12.470.05
12.830.05
CaO21.500.07
21.190.07
21.160.07
21.080.07
21.710.07
Na2O0.580.03
0.590.03
0.560.03
0.620.03
0.550.03
K2O0.010.01
0.000.01
0.010.01
0.000.00
0.000.01
Cr2O30.020.03
0.010.03
0.020.03
0.000.03
0.010.03
TOTAL99.22

99.47

98.51

98.15

99.43


TSC7_G5_11 σ
TSC7_G7_11 σ
TSC7_G9_11 σ
TSC7_G10_11 σ
TSC7_G10_21 σ

SiO246.860.10
48.290.10
46.400.10
48.660.10
48.800.10
TiO21.870.03
1.730.03
1.750.03
1.780.03
1.170.02
Al2O36.310.04
5.370.04
7.340.04
4.810.03
5.540.04
FeO7.830.15
7.950.15
6.650.14
7.840.15
5.690.13
MnO0.130.01
0.140.01
0.100.01
0.140.01
0.070.01
MgO12.900.05
13.290.06
13.140.05
13.240.06
14.410.06
CaO22.190.07
21.700.07
22.780.07
21.890.07
23.040.07
Na2O0.530.03
0.560.03
0.430.03
0.460.03
0.340.03
K2O0.010.01
0.000.01
0.000.01
0.000.01
0.000.01
Cr2O30.000.03
0.000.03
0.000.03
0.040.03
0.130.03
TOTAL98.63

99.04

98.59

98.85

99.18


TSC7_G10_31 σ
TSC7_G10_41 σ
TSC7_G10_51 σ
TSC7_G10_61 σ
TSC3_G1_11 σ

SiO248.240.10
49.070.10
49.500.10
49.480.10
48.680.10
TiO21.190.02
0.990.02
0.940.02
1.340.02
1.560.02
Al2O35.400.04
5.050.03
4.820.03
3.950.03
4.890.03
FeO5.550.13
5.380.12
5.420.13
7.900.15
7.470.15
MnO0.070.01
0.070.01
0.060.01
0.150.01
0.160.01
MgO14.200.06
14.540.06
14.960.06
14.110.06
13.430.06
CaO22.910.07
22.770.07
22.780.07
22.150.07
21.920.07
Na2O0.330.03
0.380.03
0.360.03
0.390.03
0.460.03
K2O0.000.01
0.000.01
0.000.01
0.000.01
0.000.01
Cr2O30.100.03
0.250.04
0.270.04
0.060.03
0.020.03
TOTAL97.99

98.50

99.12

99.52

98.59


TSC3_G1_21 σ
TSC3_G1_31 σ
TSC3_G3_11 σ
TSC3_G3_21 σ
TSC3_G3_31 σ

SiO245.120.10
46.570.10
49.080.10
48.100.10
49.310.10
TiO22.510.03
2.190.03
1.520.02
1.560.02
1.410.02
Al2O37.870.04
6.860.04
5.450.04
5.150.03
4.260.03
FeO8.340.15
8.190.15
8.530.16
7.710.15
7.610.15
MnO0.140.01
0.150.01
0.190.01
0.170.01
0.170.01
MgO11.790.05
12.350.05
13.370.06
13.580.06
14.030.06
CaO22.010.07
22.160.07
21.030.07
22.240.07
22.180.07
Na2O0.450.03
0.510.03
0.640.03
0.540.03
0.480.03
K2O0.020.01
0.000.01
0.010.01
0.000.01
0.000.01
Cr2O30.000.03
0.010.03
0.020.03
0.010.03
0.000.03
TOTAL98.26

98.99

99.85

99.05

99.47


TSC3_G9_11 σ
TSC3_G9_31 σ
TSC3_G9_41 σ
TSC9_G1_11 σ
TSC9_G1_21 σ

SiO249.350.10
49.340.10
47.900.10
48.320.10
47.920.10
TiO21.590.02
1.320.02
1.950.03
1.250.02
1.690.03
Al2O35.200.04
4.430.03
6.230.04
6.290.04
5.820.04
FeO8.360.15
7.610.15
8.180.15
8.430.15
7.210.14
MnO0.160.01
0.150.01
0.150.01
0.140.01
0.110.01
MgO13.430.06
14.100.06
12.900.05
13.000.05
13.250.06
CaO22.260.07
22.560.07
21.800.07
22.060.07
22.000.07
Na2O0.570.03
0.370.03
0.480.03
0.430.03
0.440.03
K2O0.000.01
0.000.01
0.010.01
0.010.01
0.010.01
Cr2O30.050.03
0.000.03
0.020.03
0.000.03
0.000.03
TOTAL100.96

99.87

99.62

99.93

98.45


TSC9_G3_11 σ
TSC9_G3_21 σ
TSC9_G5_11 σ






SiO247.390.10
48.740.10
47.550.10





TiO21.970.03
1.630.02
1.630.03





Al2O35.610.04
5.290.04
4.870.03





FeO7.520.15
7.270.14
7.660.15





MnO0.140.01
0.130.01
0.170.01





MgO13.190.06
13.600.06
13.440.06





CaO22.330.07
22.160.07
22.480.07





Na2O0.560.03
0.530.03
0.460.03





K2O0.020.01
0.020.01
0.010.01





Cr2O30.010.03
0.000.03
0.040.03





TOTAL98.74

99.36

98.31






* TSC samples were collected from a cliff below Via Pianetto at 37°36’21” N and 15°10’20” E from the base at sea level to the top, approximately 85 m above, as shown in the cross section of Figure S-1.

Back to article | Download in Excel


Table S-2 Trace element data (ppm) collected by LA-ICP-MS at the University of New Hampshire.

TSC2_G1_11 s.e.
TSC2_G1_21 s.e.
TSC2_G1_31 s.e.
TSC2_G1_41 s.e.
TSC2_G3_11 s.e.

Li507
10314
558
608
547
Sc1053
913
973
973
983
Ti10307233
8896154
9244187
10272294
591198
V31713
25711
31814
32715
22410
Cr663
592
603
513
242
Ni687
586
626
383
514
Sr1327
1246
1166
1288
1327
Y541
451
421
462
381
Zr1284
1074
994
1146
753
Nb0.90.3
1.60.2
0.890.2
1.00.2
0.60.1
Sn2.30.3
1.00.3
1.80.2
4.20.3
1.60.4
La151
12.00.9
11.20.7
141
11.00.8
Ce484
423
373
484
393
Pr9.30.9
7.90.8
7.20.7
91
7.10.7
Nd494
433
383
453
383
Sm14.00.7
121
11.00.5
12.20.7
9.60.4
Eu4.50.5
4.00.4
3.30.3
4.60.4
3.50.3
Gd152
151
121
132
10.00.8
Tb2.30.2
2.20.2
1.50.1
1.80.2
1.80.1
Dy14.00.5
101
9.70.6
121
10.40.5
Ho2.50.1
2.250.2
2.00.1
1.90.1
1.90.1
Er7.70.7
5.10.6
5.00.5
5.40.7
4.40.6
Tm0.880.07
0.620.09
0.720.02
0.50.1
0.600.02
Yb3.60.4
3.90.3
3.90.3
3.20.5
2.60.3
Lu0.490.07
0.60.1
0.450.09
0.50.2
0.40.1
Hf8.20.8
7.40.5
5.00.6
81
4.70.5
Pb0.140.03
0.170.03
0.190.03
0.40.3
0.210.05
Th0.290.03
0.200.03
0.190.03
0.250.03
0.130.02
U0.0250.009
0.0290.008
0.0380.010
0.0020.009
0.0080.008


TSC2_G3_21 s.e.
TSC2_G3_31 s.e.
TSC2_G3_41 s.e.
TSC2_G3_51 s.e.
TSC2_G3_61 s.e.

Li142
5.40.7
142
91
162
Sc1133
1063
968
902
893
Ti488885
4772102
5551390
6382173
6255125
V2189
23410
24919
27314
26911
Cr241
301
323
462
422
Ni413
374
383
423
393
Sr844
774
746
824
864
Y21.60.6
20.20.6
182
20.40.7
200.6
Zr472
402
382
442
442
Nb0.360.06
0.410.08
0.290.08
0.590.09
0.80.1
Sn0.50.1
0.50.2
0.70.2
0.70.2
0.70.1
La5.10.4
4.30.3
4.20.4
4.60.3
5.10.3
Ce181
161
142
181
181
Pr3.60.4
3.30.3
30.4
3.30.3
3.70.4
Nd212
162
161
161
201
Sm5.10.3
4.30.2
4.20.7
3.90.1
3.80.2
Eu1.40.2
1.40.1
1.20.1
1.20.1
1.40.2
Gd6.70.8
4.80.4
40.8
4.90.4
5.80.5
Tb1.10.1
0.90.1
10.1
0.960.06
10.1
Dy4.90.2
4.40.2
3.40.6
3.90.3
4.70.4
Ho0.740.06
0.690.07
0.630.02
0.750.05
0.590.03
Er2.30.3
1.90.2
1.60.4
1.60.2
1.90.2
Tm0.290.05
0.280.02
0.280.06
0.340.05
0.330.04
Yb1.80.1
1.40.2
1.80.2
1.10.2
10.2
Lu0.220.05
0.230.04
0.190.03
0.190.03
0.220.03
Hf1.60.2
1.40.1
1.40.2
1.40.2
1.40.2
Pb0.0680.008
0.130.03
0.080.02
0.130.02
0.140.04
Th0.0500.008
0.0450.006
0.050.01
0.050.01
0.110.01
U0.0070.003
0.0070.002
0.0130.002
0.0090.002
0.0160.002


TSC2_G4_11 s.e.
TSC2_G4_21 s.e.
TSC2_G2_11 s.e.
TSC2_G2_21 s.e.
TSC2_G2_31 s.e.

Li537
598
183
466
284
Sc1314
1295
1173
1053
1396
Ti6293115
6055128
8882153
6910140
8867314
V27511
27912
31414
28812
33217
Cr64223
64027
423
543
443
Ni1067
1077
524
684
393
Sr995
844
1126
955
895
Y181
170.6
411
362
382
Zr342
301
843
1027
814
Nb0.420.08
0.10.1
0.60.1
4.70.5
1.10.2
Sn0.50.2
0.50.2
1.60.2
0.80.2
1.20.3
La4.10.3
3.20.2
11.40.7
222
10.10.8
Ce131
10.90.9
353
535
313
Pr2.50.3
2.20.3
6.60.7
81
60.6
Nd131
121
383
374
322
Sm3.60.5
3.10.2
10.40.9
8.80.8
9.50.2
Eu1.50.2
10.1
3.10.3
2.40.3
2.70.3
Gd50.7
5.30.8
131
101
101
Tb0.70.1
0.560.09
1.60.1
1.40.1
1.30.1
Dy3.30.1
40.4
8.20.6
7.90.3
7.50.4
Ho10.04
0.610.03
1.50.1
1.40.1
1.40.1
Er1.10.3
1.70.3
4.80.4
4.30.5
3.30.4
Tm0.270.07
0.230.07
0.550.06
0.60.1
0.340.04
Yb1.30.2
0.60.3
3.50.2
3.10.3
2.40.4
Lu0.320.04
0.210.09
0.540.09
0.70.1
0.350.06
Hf1.10.2
1.30.1
4.20.4
3.30.5
3.40.3
Pb0.030.02
0.090.03
0.080.02
1.40.19
0.110.04
Th0.0620.005
0.040.01
0.20.01
1.80.2
0.190.02
U0.0070.002
0.0060.003
0.0180.004
0.190.03
0.0240.004


TSC2_G8_11 s.e.
TSC2_G8_21 s.e.
TSC7_G2_11 s.e.
TSC7_G2_21 s.e.
TSC7_G5_11 s.e.

Li101
345
213
5.80.8
2.70.4
Sc1013
1074
1073
1003
1275
Ti8210151
8450374
10814216
9617196
9624290
V30213
30618
31414
32113
26512
Cr522
482
766
683
36039
Ni464
443
574
463
566
Sr855
765
1387
1156
1137
Y271
252
361
372
281
Zr623
623
943
953
795
Nb0.40.1
0.70.1
1.40.2
0.60.1
0.70.2
Sn0.80.2
0.60.2
1.60.3
1.20.1
2.70.6
La6.90.4
6.50.5
9.20.7
9.10.6
6.30.7
Ce245
212
312
353
242
Pr4.50.5
4.50.5
60.6
6.80.7
4.60.5
Nd212
212
323
363
282
Sm7.30.5
6.10.4
9.20.9
9.20.6
6.30.3
Eu2.10.2
1.60.2
30.5
3.60.4
2.70.3
Gd6.90.9
5.90.7
10.70.8
8.40.7
6.40.8
Tb10.1
0.910.06
1.60.1
1.50.1
1.230.09
Dy5.90.5
5.60.2
6.50.4
7.20.4
6.20.3
Ho0.830.08
0.830.08
1.70.2
1.70.1
1.20.1
Er3.30.6
3.60.5
4.40.8
3.40.4
2.60.5
Tm0.240.03
0.240.03
0.460.09
0.510.03
0.270.08
Yb20.2
1.90.2
2.80.2
2.50.3
1.50.3
Lu0.270.08
0.240.05
0.40.1
0.320.05
0.290.06
Hf2.70.2
3.10.3
3.40.4
3.90.3
3.90.4
Pb0.080.02
0.050.02
0.120.05
0.130.02
0.10.03
Th0.120.02
0.090.01
0.150.03
0.150.02
0.0790.008
U0.0180.006
0.0170.006
0.0190.006
0.0160.006
0.0070.003


TSC7_G7_11 s.e.
TSC7_G9_11 s.e.
TSC7_G10_11 s.e.
TSC7_G10_21 s.e.
TSC7_G10_31 s.e.

Li5.10.7
3.80.6
6.90.9
4.30.6
5.40.8
Sc1455
1254
1333
1343
1434
Ti11294172
9592192
8341236
6522169
6252113
V34314
29813
32515
24011
23910
Cr442
1094
75138
100546
82439
Ni494
886
506
905
875
Sr1367
1378
804
683
684
Y471
231
231
100
100
Zr1375
563
733
241
231
Nb1.50.1
0.530.09
0.70.1
0.090.07
0.130.04
Sn2.10.4
2.40.4
0.50.2
0.60.2
0.540.07
La151
5.50.4
6.20.5
1.80.2
1.60.1
Ce484
202
232
70.6
6.80.5
Pr9.10.9
3.90.4
4.30.4
1.50.2
1.40.1
Nd484
232
232
7.80.8
8.10.6
Sm12.50.4
5.60.4
5.60.6
2.60.3
2.70.3
Eu4.30.4
20.3
1.60.1
0.810.09
0.80.07
Gd11.50.9
5.90.8
6.80.6
2.50.3
2.40.3
Tb1.90.2
1.110.09
10.1
0.510.05
0.480.07
Dy10.20.7
4.90.6
4.10.2
2.50.3
1.880.06
Ho2.60.3
1.20.1
0.80.03
0.310.02
0.350.03
Er4.30.5
2.70.3
2.50.3
0.810.09
0.90.1
Tm0.760.06
0.180.04
0.250.04
0.120.03
0.120.01
Yb3.30.5
1.40.1
1.90.3
0.70.2
0.90.1
Lu0.490.14
0.330.06
0.330.04
0.050.04
0.130.04
Hf5.90.6
2.50.3
3.90.3
1.60.2
1.50.1
Pb0.160.03
0.060.01
0.080.02
0.0250.003
0.050.02
Th0.250.03
0.080.02
0.080.01
0.020.01
0.030.008
U0.0210.003
0.0170.006
0.0110.004
nd

0.0040.003


TSC7_G10_41 s.e.
TSC7_G10_51 s.e.
TSC7_G10_61 s.e.
TSC3_G1_11 s.e.
TSC3_G1_21 s.e.

Li3.30.5
2.40.4
30.4
2.60.6
1.30.3
Sc1314
1315
1445
812
913
Ti5276143
5415101
7483175
7430159
10948178
V21012
2219
28212
1738
2189
Cr2332116
136359
693
191
151
Ni935
895
362
244
262
Sr643
623
764
18810
19610
Y91
90
191
361
401
Zr191
201
522
1354
1935
Nb0.180.02
0.150.05
0.340.03
10.1
2.10.2
Sn0.420.05
0.360.06
0.80.1
1.70.3
2.20.4
La1.60.1
1.470.09
4.40.3
171
241
Ce6.20.5
5.60.5
161
504
675
Pr1.30.2
1.20.1
3.20.3
111
141
Nd7.20.6
7.10.7
191
575
725
Sm2.40.6
2.40.2
4.40.3
10.60.5
140.7
Eu0.770.06
0.70.1
1.50.2
4.20.4
5.10.6
Gd1.90.2
2.80.2
5.50.6
161
182
Tb0.240.03
0.460.03
0.710.07
1.90.2
1.80.2
Dy1.70.1
1.810.3
4.20.1
9.80.4
100.6
Ho0.290.04
0.290.03
0.760.04
1.70.2
1.720.08
Er10.1
0.70.1
2.30.2
2.90.3
3.70.5
Tm0.090.02
0.10.04
0.180.03
0.530.05
0.60.1
Yb0.490.08
0.50.03
1.80.3
3.10.4
2.20.6
Lu0.080.01
0.070.02
0.190.05
0.40.06
0.50.1
Hf0.90.1
1.30.2
2.30.3
5.40.4
7.40.6
Pb0.030.01
0.030.01
0.040.01
0.110.02
0.080.01
Th0.0150.004
0.0270.006
0.0530.006
0.210.01
0.420.06
U0.0030.002
0.0030.001
0.0080.001
0.0210.005
0.0450.006


TSC3_G1_31 s.e.
TSC3_G3_11 s.e.
TSC3_G3_21 s.e.
TSC3_G3_31 s.e.
TSC3_G9_11 s.e.

Li3.40.6
4.50.7
10.3
0.90.2
6.61
Sc933
602
843
1013
1134
Ti10122201
7869133
7534145
6712123
8850302
V21318
1958
1868
1949
26812
Cr9.50.8
11.60.5
10.30.8
101
11.50.7
Ni213
212
171
142
183
Sr25519
1638
1578
1498
18112
Y401
31.70.8
29.60.7
291
37.90.9
Zr1866
1144
1093
1144
1836
Nb5.40.8
1.10.1
0.760.07
0.90.1
1.80.1
Sn1.70.4
0.90.2
0.70.3
0.60.2
0.80.2
La262
15.50.9
14.20.9
13.50.8
191
Ce686
453
423
403
646
Pr131
91
91
8.30.8
121
Nd665
484
433
383
534
Sm13.70.7
111
101
9.70.6
12.80.6
Eu3.90.3
40
30
3.10.3
3.40.3
Gd172
121
121
9.90.8
131
Tb1.60.2
1.60.2
1.40.2
1.30.1
1.80.1
Dy9.60.7
7.40.4
6.10.3
5.50.4
90.5
Ho1.40.05
1.480.08
1.070.07
1.10.08
1.40.1
Er3.10.5
2.90.4
2.70.4
3.20.4
4.30.6
Tm0.540.05
0.390.08
0.290.04
0.40.06
0.380.07
Yb2.50.5
2.80.5
2.20.3
2.80.6
2.30.1
Lu0.290.07
0.340.07
0.380.08
0.310.08
0.40.06
Hf7.30.7
4.20.3
4.40.4
4.30.3
6.80.7
Pb0.90.2
0.070.01
0.110.01
0.040.01
0.160.03
Th1.20.2
0.230.03
0.150.01
0.170.02
0.350.04
U0.320.06
0.0210.004
0.0110.003
0.0230.003
0.0620.008


TSC3_G9_31 s.e.
TSC3_G9_41 s.e.
TSC9_G1_11 s.e.
TSC9_G1_21 s.e.
TSC9_G3_11 s.e.

Li0.30.3
1.30.2
365
335
284
Sc1054
882
531
782
1143
Ti9521375
9280198
587595
8005159
10648166
V27814
24210
22710
26313
2169
Cr212
13.90.7
363
422
231
Ni322
233
372
354
222
Sr1548
1689
1238
1167
1507
Y25.80.8
30.80.9
15.60.4
21.40.8
31.10.9
Zr1084
1304
491
672
1424
Nb1.40.2
1.20.2
0.50.1
0.610.07
1.10.1
Sn1.10.2
0.80.2
0.530.06
10.2
1.60.2
La12.20.8
14.80.9
60.4
80.5
14.50.9
Ce413
504
242
313
484
Pr8.10.8
101
4.20.4
5.60.6
8.70.9
Nd363
443
212
282
463
Sm9.20.4
111
5.80.5
7.60.5
11.60.4
Eu2.90.2
3.40.3
1.70.2
2.60.4
3.20.3
Gd8.70.9
9.80.8
4.60.5
6.70.9
10.70.9
Tb1.170.08
1.30.1
0.680.09
0.910.06
1.30.1
Dy50.1
6.60.3
3.70.5
5.60.4
7.40.4
Ho0.990.06
1.10.1
0.830.02
1.130.09
1.60.1
Er3.30.3
2.80.5
1.70.3
2.30.2
3.60.4
Tm0.390.06
0.420.03
0.210.02
0.240.03
0.280.02
Yb1.80.3
2.50.2
1.20.2
1.250.05
20.4
Lu0.290.08
0.370.05
0.070.02
0.180.02
0.290.04
Hf3.70.2
4.40.4
2.20.2
30.2
6.30.4
Pb0.040.01
0.050.01
0.040.02
0.040.02
0.10.01
Th0.190.01
0.190.02
0.0880.006
0.10.02
0.20.01
U0.0170.007
0.0210.005
0.0170.004
0.0190.005
0.0250.003


TSC9_G3_21 s.e.
TSC9_G5_11 s.e.
TSC9_G5_21 s.e.






Li243
183
101





Sc992
995
1143





Ti8647135
9205538
10315165





V1848
25514
27112





Cr211
243
71





Ni262
274
182





Sr1467
15114
1849





Y24.50.9
241
401





Zr943
987
1586





Nb0.820.07
0.80.1
1.80.2





Sn1.20.2
1.10.2
1.40.4





La10.30.6
141
241





Ce353
535
877





Pr6.30.6
80.8
141





Nd353
393
645





Sm9.20.4
91
161





Eu2.30.2
2.60.2
50





Gd8.40.9
81
151





Tb10.1
1.040.07
20





Dy6.10.3
5.50.4
10.30.5





Ho0.90.1
0.990.08
1.50.07





Er2.40.3
2.50.4
3.70.3





Tm0.30.05
0.290.06
0.390.04





Yb1.30.2
1.70.2
3.20.2





Lu0.260.04
0.160.03
0.440.06





Hf3.80.2
4.50.5
6.80.4





Pb0.050.01
0.220.05
0.140.03





Th0.1170.008
0.180.03
0.230.02





U0.0340.005
0.0330.008
0.040.005





Back to article | Download in Excel


Table S-3 Comparison of LA-ICP-MS repeat analyses of ML3B-G glass standard with reported literature values.

ML3B-G*LA-ICP-MS




literature valueaverage




ppmppmΔ lit-avg Δ as %1 σ* 1 σ as %
Li4.505.200.7015.50.9321
Sc31.6031.01-0.59-1.91.304
Ti12769.7812823.9554.160.4368.343
V268.00278.6410.644.017.927
Cr177.00182.945.943.49.816
Ni107.00112.635.635.36.766
Sr312.00327.3215.324.921.967
Y23.9024.290.391.61.858
Zr122.00124.982.982.48.767
Nb8.619.170.566.50.9311
Sn1.141.160.021.40.3833
La8.999.530.546.00.9711
Ce23.1024.951.858.02.6912
Pr3.433.800.3710.70.4914
Nd16.7017.951.257.52.2213
Sm4.754.790.040.80.7315
Eu1.671.810.148.60.2112
Gd5.265.670.417.80.9217
Tb0.800.840.045.50.1823
Dy4.844.850.010.20.5812
Ho0.910.910.000.50.1314
Er2.442.640.208.40.4117
Tm0.320.330.001.50.0620
Yb2.062.00-0.06-2.70.4522
Lu0.290.320.0413.20.0828
Hf3.223.420.206.20.7624
Pb1.381.530.1510.50.2317
Th0.550.570.024.50.0611
U0.440.500.0512.20.0920

* ML3B-G was analysed twice between every 5 unknown samples, totalling 24 standard analyses during collection of the TSC data reported in this study. Analytical uncertainty is determined by having the first of each two ML3B-G analyses serve as the 'standard' for calculating the concentration of the second ML3B-G analysis, which is run as an unknown sample. The average value of the 12 ML3B-G 'unknowns' is compared here with the literature values for these trace elements (Jochum et al., 2006) along with the standard deviation of these ML3B-G runs.

Back to article | Download in Excel


Table S-4 TSC clinopyroxene major element compositions (wt. %) along grain transects were analysed on the Massachusetts Institute of Technology (MIT) JEOL-JXA-8200 Superprobe. Uncertainty (2s) has been calculated from the standard deviation of replicate analyses of the DJ35 diopside-jadeite glass and ALP7 aluminous orthopyroxene standards, as well as several points inferred from back scattered electron imaging to be from the same clinopyroxene crystal growth zone: SiO2 (0.31), TiO2 (0.02), Al2O3 (0.07), FeO (0.08), MgO (0.11), MnO (0.01), CaO (0.30), Na2O (0.04), K (0.01), Cr2O3 (0.02).

SiO2TiO2Al2O3FeOtMnOMgOCaONa2OK2OCr2O3Total
TSC-2A-247.741.416.87.170.1113.0921.80.30.010.0198.44
TSC-2A-348.571.36.497.950.1312.8221.420.400.0499.12
TSC-2A-447.881.296.47.710.1313.2221.280.3600.0498.31
TSC-2A-548.711.236.177.940.1513.4421.440.4400.0399.54
TSC-2A-649.171.125.337.710.1413.8521.370.4600.0399.18
TSC-2A-748.691.245.596.350.0914.2322.090.420.010.0498.74
TSC-2A-849.571.185.646.440.114.2522.380.3200.0399.9
TSC-2A-949.471.145.596.650.114.1722.140.4200.0199.69
TSC-2A-1048.871.196.587.250.0913.5422.20.480.020.04100.26
TSC-2A-1148.631.26.497.260.1213.7521.790.4400.0599.71
TSC-2A-1248.941.226.337.150.1113.7721.930.40.010.0399.89
TSC-2A-1349.21.035.967.030.1413.9521.880.350.010.0799.62
TSC-2B-249.451.283.848.310.1914.5620.990.5400.0599.21
TSC-2B-348.121.514.987.970.1414.2720.910.550.010.0198.47
TSC-2B-449.780.994.177.770.1614.9321.220.500.0199.53
TSC-2B-550.210.923.647.770.1715.1720.930.4800.0199.31
TSC-2B-650.430.923.787.790.1815.2421.380.4300100.16
TSC-2B-750.431.133.867.80.1714.8921.340.3700.01100
TSC-2B-850.830.933.547.930.1814.9920.850.4100.0199.67
TSC-2B-950.960.993.697.940.1814.9521.130.3800100.21
TSC-2B-1050.380.993.767.850.1915.2221.330.4700.002100.18
TSC-2C-147.42.027.678.990.1711.9620.870.490.010.0499.62
TSC-2C-246.541.937.238.730.1712.420.590.530.010.0698.19
TSC-2C-346.511.967.238.690.1512.7420.780.4800.0498.59
TSC-2C-446.471.947.2690.1813.120.740.5800.0199.29
TSC-2C-546.711.877.038.840.1812.9920.790.5800.0299.01
TSC-2C-646.931.847.028.760.1513.0920.810.580.010.0299.21
TSC-2C-747.071.836.918.670.1713.2120.950.5300.0399.37
TSC-2C-846.791.877.138.990.1713.2420.880.5200.0199.6
TSC-2C-946.531.896.988.910.1713.3721.20.5600.0299.63
TSC-2C-1049.140.883.977.750.1715.5821.380.580.01099.45
TSC-2D-248.91.423.937.770.1613.9321.670.3500.0498.17
TSC-2D-349.11.43.857.720.1414.2321.630.410.010.0498.53
TSC-2D-450.421.243.517.620.1314.5521.870.4300.0399.79
TSC-2D-549.851.384.017.960.1414.3321.960.400.04100.06
TSC-2D-650.451.324.017.450.1514.2821.730.530.010.0299.95
TSC-2D-750.011.23.57.90.1614.8121.750.470.010.0199.82
TSC-2D-849.811.423.847.60.1714.6822.120.4500.02100.13
TSC-2D-949.321.584.198.110.1614.3521.760.400.0399.9
TSC-2D-1046.771.554.538.30.1714.7921.510.5200.0198.15
TSC-3A-149.141.614.817.46013.7122.470.510099.72
TSC-3A-249.091.674.737.42013.6122.520.460099.5
TSC-3A-349.011.654.998.19013.3121.660.610099.43
TSC-3A-4482.195.638.61012.6722.030.610099.74
TSC-3A-548.682.024.918.23012.9622.160.680099.64
TSC-3A-649.222.044.139.22012.6722.130.660.010100.09
TSC-3A-747.92.315.098.670.0212.5622.050.630099.23
TSC-3A-850.421.512.969.240.0212.8322.010.70099.69
TSC-3A-945.82.747.38.890.0212.121.90.540099.29
TSC-3A-1049.911.394.117.920.0113.9621.640.570099.51
TSC-3A-1149.491.474.727.330.0113.8922.090.550099.55
TSC-3A-1249.741.464.618.23013.7121.490.570099.81
TSC-3B-150.230.954.595.24014.9723.050.3900.1899.6
TSC-3B-250.090.964.775.4014.9222.930.4300.1799.67
TSC-3B-349.471.145.285.47014.8822.820.4600.2199.73
TSC-3B-449.351.15.435.64014.6222.720.4300.1599.44
TSC-3B-550.120.894.795.38014.9822.80.400.1999.55
TSC-3B-649.281.145.45.56014.4622.840.4100.1199.21
TSC-3B-749.331.125.265.40.0214.4922.850.470.010.2499.18
TSC-3B-849.291.015.025.340.0214.6822.640.500.2298.72
TSC-3B-949.11.564.387.87013.9122.150.470099.45
TSC-3B-1049.881.523.867.930.0114.0822.050.410099.74
TSC-3B-1149.511.175.45.54014.6322.980.3800.1799.77
TSC-3B-1249.411.115.335.48014.4922.830.4200.1899.26
TSC-3C-148.5524.968.44013.0622.20.5400.0299.76
TSC-3C-248.062.155.268.53012.9122.20.560099.67
TSC-3C-348.1924.968.52012.9722.380.5900.0599.66
TSC-3C-4482.125.148.52012.6821.960.620099.04
TSC-3C-548.282.024.938.33012.7522.130.6400.0299.09
TSC-3C-647.432.465.488.89012.4321.930.620099.24
TSC-3C-749.681.663.698.22013.4621.620.610098.95
TSC-3C-848.781.884.658.46012.9822.010.580.010.0499.38
TSC-3C-947.951.895.448.35013.2322.190.4600.0199.52
TSC-3C-1048.322.084.948.66012.8921.850.6400.0299.4
TSC-3C-1147.712.365.488.73012.5722.070.580099.5
TSC-3D-147.722.055.728.19012.8222.30.560099.36
TSC-3D-247.942.135.518.46012.9722.130.540.01099.69
TSC-3D-348.271.85.258.24012.9722.260.580.01099.38
TSC-3D-448.211.995.277.860.0313.0622.310.5200.0199.26
TSC-3D-547.372.276.038.16012.6322.380.560.01099.4
TSC-3D-647.612.185.828.37012.5522.140.650099.32
TSC-3D-748.352.164.888.61012.9921.720.670099.38
TSC-3D-848.831.645.048.160.0313.222.070.630.01099.61
TSC-3D-948.051.476.257.53013.5122.240.510099.56
TSC-3D-1048.651.395.937.52013.7222.170.5200.0199.92
TSC-7A-147.741.595.467.830.1814.0421.510.770099.13
TSC-7A-248.721.44.857.680.1814.1221.690.6400.0299.3
TSC-7A-348.551.484.777.70.1714.0921.710.4700.0498.97
TSC-7A-449.071.44.377.70.1614.221.730.560.010.0399.23
TSC-7A-549.591.33.937.50.1614.2621.910.5800.0599.28
TSC-7A-648.731.594.547.640.1513.7322.170.480.020.0399.09
TSC-7A-749.011.54.377.730.1713.6822.060.5100.0299.04
TSC-7A-849.311.384.367.520.1613.9321.930.4700.0299.08
TSC-7A-949.921.374.247.50.1513.9621.860.5100.0499.55
TSC-7A-1050.131.324.277.460.1613.6321.720.4100.0299.13
TSC-7B-249.941.263.987.380.1714.2321.940.470.01099.38
TSC-7B-348.581.464.777.280.1813.9521.970.380.01098.59
TSC-7B-449.141.294.487.490.1514.2721.660.4900.0398.99
TSC-7B-548.321.284.087.230.1614.8721.80.3700.0298.12
TSC-7B-650.091.263.767.520.1614.0321.560.460.010.0198.86
TSC-7B-749.821.223.747.580.1914.1621.450.4700.0298.65
TSC-7B-846.932.045.917.770.1413.1121.940.4600.0598.35
TSC-7B-947.132.095.688.230.1512.8721.810.4900.0198.46
TSC-7B-1047.351.875.817.750.1513.4921.870.60.01098.9
TSC-9A-147.952.585.029.03012.4722.060.700.0199.82
TSC-9A-248.041.985.817.42013.2322.820.520099.82
TSC-9A-348.182.225.458.290.0513.0722.440.7200.03100.44
TSC-9A-447.852.095.627.890.0313.0222.30.580099.38
TSC-9A-547.062.376.668.020.0312.8222.890.5100100.37
TSC-9A-647.762.335.938.060.0112.8222.290.6200.0599.86
TSC-9A-748.561.75.277.490.0213.5422.810.560099.95
TSC-9A-849.441.684.517.070.0114.0222.460.4800.0199.67
TSC-9A-949.621.674.077.60.0213.621.950.680099.21
TSC-9A-1047.122.066.598.45012.722.080.520099.52
TSC-9B-147.852.135.797.71013.0522.350.5600.0299.47
TSC-9B-249.761.334.177.540.0114.0321.870.6200.0199.34
TSC-9B-348.411.735.127.630.0313.3822.20.510.01099.02
TSC-9B-449.421.434.357.070.0314.1822.460.530.010.0199.49
TSC-9B-549.631.514.497.380.0213.8921.810.620.01099.36
TSC-9B-650.171.423.737.240.0214.1622.260.50099.5
TSC-9B-749.731.54.247.510.0213.822.10.590099.48
TSC-9B-849.371.674.447.61013.9222.380.6200.04100.05
TSC-9B-949.631.464.397.06014.1722.660.460099.83
TSC-9B-1050.251.33.717.21014.5822.580.4400.01100.09
TSC-9C-146.862.556.228.380.0212.7122.490.590099.82
TSC-9C-248.481.885.027.650.0313.3222.520.590099.49
TSC-9C-350.561.553.267.690.0114.321.370.620.01099.37
TSC-9C-449.81.423.977.39014.1221.850.490.01099.04
TSC-9C-549.991.413.887.15014.2921.910.520099.15
TSC-9C-649.341.674.397.5013.8421.670.580.01098.99
TSC-9C-749.241.634.317.560.0113.721.990.530098.96
TSC-9C-848.811.785.017.59013.4822.480.640.01099.8
TSC-9C-948.871.635.167.15013.6622.70.530.01099.71
TSC-9C-1046.412.546.998.16012.5122.640.560.01099.82

*Operating conditions of the MIT JXA-8200 consisted of a 15 keV accelerating voltage and 10 nA beam current, with all analyses using a focused beam of ~1 μm and 30 s count times. Data were reduced using the CITZAF correction procedure of Armstrong (1995). The few totals lower than 98 wt. % have been omitted.
† All iron reported as FeO

Back to article | Download in Excel


Table S-5 Hf-Nd-Pb isotopic data for Timpe Santa Caterina whole rock (WR) and clinopyroxene (cpx) separates*. The uncertainties reported for Nd and Hf isotope ratios are internal 2 s.e. We use the values of external reproducibility as reported in the footnote to identify analytically resolvable WR-cpx disequilibrium discernable above the 2σ level.

143Nd/144NdεNd176Hf/177Hf †εHf §206Pb/204Pb §207Pb/204Pb §208Pb/204Pb #
TSC-2
     WR0.512952(2)6.10.283035(5)9.320.01515.66839.645
     cpx0.512942(3)5.90.283033(4)9.220.01415.67039.645

TSC-3
     WR0.512948(3)60.283032(4)9.220.07815.67039.666
     cpx0.512937(2)5.80.283047(6)9.720.07215.66839.655

TSC-7
     WR0.512929(4)5.70.283012(4)8.519.99015.67639.648
     cpx0.512921(2)5.50.283024(6)8.919.94615.66839.587

TSC-9
     WR0.512930(3)5.70.283014(4)8.619.98715.67539.647
     cpx0.512922(3)5.50.282996(4)7.919.97815.66939.620

* WR samples (italicised) are from Bryce et al. (2011) and are reported here for convenience. For the clinopyroxene samples, aliquots of 0.5 to 2 mm clinopyroxene handpicked from the TSC lavas were first leached in hot (~120° C) 6 N HCl to remove any Pb surface contamination following techniques outlined in Blichert-Toft and Albarède (2009). The resulting residues were subsequently digested in a mixture of concentrated HF-HNO3. Lead was separated prior to Hf and Nd separation using techniques described in Bryce and DePaolo (2004). Total Pb procedural blanks were <40 pg. Hafnium was separated from the Pb column eluent using the three column procedure described for high magnesium samples by Blichert-Toft (2001). Neodymium was from the Pb column eluent, separated from the residue of the first Hf column using a three column procedure starting with a small (0.5 mL) cation exchange resin (AG50x8) to strip off Fe and other major ions. The REE-rich elutions were subsequently passed through a 0.5 mL column filled with TRU-Spec resin to concentrate further the REEs, where the 2 M HNO3 was used to elute other ions and the REEs were collected with water. Nd was finally separated from Sm using a 1.6 mL LN-Spec column and a 0.25 M HCl elution. Total Nd procedural blanks were <30 pg and total Hf procedural blanks were <20 pg.

† For the Nd isotopic measurements, instrument performance was monitored with a laboratory solution, and accuracy was assessed through repeated (n = 9) analyses of BCR-1 which yielded 0.512638 (with external 2σ = 0.000020). εNd was calculated using a CHUR value of 143Nd/144Nd = 0.512638.

§ Hf isotopic analyses were obtained following the techniques described in Blichert-Toft et al. (1997). The 100 ppb JMC 475 Hf standard, run throughout the analytical session (n = 21) to monitor instrument performance, yielded 176Hf/177Hf = 0.282160 (with external 2σ = 0.000015). εHf was calculated using a CHUR value of 176Hf/177Hf = 0.282772 (Blichert-Toft and Albarède, 1997).

# Mass fractionation in Pb isotope analyses was corrected via Tl normalisation as described in White et al. (2000), and ratios were additionally adjusted for drift using the standard bracketing technique outlined in Albarède et al. (2004) using the NIST SRM values reported in Eisele et al. (2003). Four NIST SRM 981 samples, run as “blind” amongst the 17 bracketing standards analysed, yielded averages (with 2σ external precision) of 208Pb/204Pb = 36.7271 (0.0019), 207Pb/204Pb = 15.4978 (0.0009) and 206Pb/204Pb = 16.9408 (0.0012).

Back to article | Download in Excel


Table S-6 Ranges of whole rock and clinopyroxene major and minor element compositions (wt. %) observed for the Timpe Santa Caterina flows studied.

LavaClinopyroxene

LowHighLowHigh
SiO246.650.745.851
TiO21.62.10.92.7
Al2O316.819.837.7
FeO*8.210.95.29.2
MnO0.150.1900.19
MgO3.46.31215.6
CaO8.710.920.323.1
Na2O3.75.50.30.8
K2O12.100.02
P2O50.51.400.24
Back to article | Download in Excel


Figure S-3 Clinopyroxene trace element evolution during isobaric fractionation of peridotite melt (green) and 10 % pyroxenite component melts (red) at 1.0, 0.6, and 0.2 GPa. Modelling sensitivity to starting composition is illustrated by including paths for melts with 5 % and 20 % pyroxenite component shown as blue and purple dotted lines, respectively.
Back to article | Download in Powerpoint