Back to article

Figures and tables

182W evidence for core-mantle interaction in the source of mantle plumes

H. Rizo1,

1Department of Earth Sciences, Carleton University, Ottawa-Carleton Geoscience Centre, Ottawa, ON, K1S 5B6, Canada

D. Andrault2,

2Laboratoire Magmas et Volcans, Université Clermont-Auvergne, CNRS, IRD, OPGC, Clermont-Ferrand, France

N.R. Bennett3,

3Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA

M. Humayun4,

4Department of Earth, Ocean and Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

A. Brandon5,

5Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

I. Vlastelic2,

2Laboratoire Magmas et Volcans, Université Clermont-Auvergne, CNRS, IRD, OPGC, Clermont-Ferrand, France

B. Moine6,

6Université Lyon, UJM Saint-Etienne, UCA, IRD, CNRS, Laboratoire Magmas et Volcans UMR 6524, Saint Etienne, France

A. Poirier7,

7Département des Sciences de la Terre et de l’atmosphère, Geotop-Université du Québec à Montréal, Montreal, QC, H2X 3Y7, Canada

M.A. Bouhifd2,

2Laboratoire Magmas et Volcans, Université Clermont-Auvergne, CNRS, IRD, OPGC, Clermont-Ferrand, France

D.T. Murphy8

8Queensland University of Technology, Brisbane, Queensland, Australia

Affiliations  |  Corresponding Author  |  Cite as  |  Funding information

Rizo, H., Andrault, D., Bennett, N.R., Humayun, M., Brandon, A., Vlastelic, I., Moine, B., Poirier, A., Bouhifd, M.A., Murphy, D.T. (2019) 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Persp. Let. 11, 6–11.

This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to H. Rizo (RGPIN-2015-03982), and by the Fonds de Recherche Nature et Technologies (FRQNT) start up program for new university researchers in Canada.

Geochemical Perspectives Letters v11  |  doi: 10.7185/geochemlet.1917
Received 1 April 2019  |  Accepted 17 May 2019  |  Published 20 June 2019
Copyright © The Authors

Published by the European Association of Geochemistry
under Creative Commons License CC BY-NC-ND 4.0



Table 1 Tungsten isotope results for rock samples from the Pilbara Craton, the Kerguelen Archipelago, Réunion Island and the Hawaiian basalt BHVO-2.
LocationSampleµ182Wµ183W
Réunion IslandREU 1001-053-19.0 ± 4.0-3.3 ± 3.5
REU 1001-053 duplicate-12.4 ± 5.0-1.6 ± 4.0
REU 1001-053 average-15.7 ± 3.2-2.4 ± 2.7
REU 1406-24.9a-20.2 ± 5.1-5.8 ± 4.7
REU 863-204 -8.7 ± 3.80.7 ± 3.3
REU 863-204 duplicate-9.2 ± 4.0-0.8 ± 3.4
REU 863-204 average-8.9 ± 2.8-0.1 ± 2.4
REU 0609-131-7.6 ± 5.30.4 ± 4.7
REU 0609-131 duplicate-8.8 ± 3.94.0 ± 3.2
REU 0609-131 average-8.2 ± 3.32.2 ± 2.9
Kerguelen PlateauTC0603-16.5 ± 8.5-3.1 ± 5.8
TC0603 duplicate-7.3 ± 4.02.1 ± 3.4
TC0603 average-11.9 ± 4.7-0.5 ± 3.3
CT02-358-9.4 ± 7.4-2.8 ± 7.2
CT02-358 duplicate-7.4 ± 3.01.9 ± 2.6
CT02-358 average-8.4 ± 4.0-0.4 ± 3.8
CT02-548-15.2 ± 4.61.1 ± 3.7
HawaiiBHVO-2-7.2 ± 4.5-0.9 ± 3.9
BHVO-2 duplicate-5.9 ± 4.54.3 ± 3.9
BHVO-2 average-6.6 ± 3.21.7 ± 2.8
Pilbara CratonAH-2515.3 ± 4.62.4 ± 3.7
AH-2613.1 ± 4.15.2 ± 3.5

µXW values (µXW = ([(XW/184W)sample/(XW/184W)standard]-1) x 106) are relative deviations of the W isotope composition of the samples from the Alfa Aesar W terrestrial standard in ppm. The standard was measured repeatedly between samples and yields a reproducibility on the 182W/184W ratio of 4.7 ppm (2 s.d., n = 11). Duplicates are measurements from different rock digestions. Errors on individual measurements are 2 standard error (2 s.e.) and averages show the propagated uncertainties on the average of multiple duplicates.

Back to article | Download in Excel


Figure 1 182W/184W data obtained in this study shown as µ182W values. Open symbols are individual analysis of samples and filled symbols show the average of the different duplicates. Errors on individual measurements shown are 2 standard error (2 s.e.) and propagated uncertainties are shown for averages. The shaded area represents the reproducibility obtained (2 s.d.) on repeated measurements of the Alfa Aesar W standard.
Back to article | Download in Powerpoint


Figure 2 Compilation of all existing 182W/184W data shown as µ182W values. Hadean and Archean mantle-derived rocks are organised in order of their age, with the oldest at the top and the youngest at the bottom. Shaded areas show the average µ182W values ± 2 s.d. for Hadean-Archean and OIB samples. OIB: Ocean Island Basalts. MORB: Mid-Ocean Ridge Basalts. Data sources: Willbold et al., 2011

Willbold, M., Elliott, T., Moorbath, S. (2011) The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195.

, 2015

Willbold, M., Mojzsis, S.J., Chen, H.W., Elliott, T. (2015) Tungsten isotope composition of the Acasta Gneiss Complex. Earth and Planetary Science Letters 419, 168-177.

; Touboul et al., 2012

Touboul, M., Puchtel, I.S., Walker, R.J. (2012) 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065-1069.

, 2014

Touboul, M., Liu, J., O'Neil, J., Puchtel, I.S., Walker, R.J. (2014) New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chemical Geology 383, 63-75.

; Liu et al., 2016

Liu, J., Touboul, M., Ishikawa, A., Walker, R.J., Pearson, D.G. (2016) Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling. Earth and Planetary Science Letters 448, 13-23.

; Puchtel et al., 2016

Puchtel, I.S., Blichert‐Toft, J., Touboul, M., Horan, M.F., Walker, R.J. (2016) The coupled 182W-142Nd record of early terrestrial mantle differentiation. Geochemistry, Geophysics, Geosystems 17, 2168-2193.

, 2018

Puchtel, I.S., Blichert-Toft, J., Touboul, M., Walker, R.J. (2018) 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochimica et Cosmochimica Acta 228, 1-26.

; Rizo et al., 2016a

Rizo, H., Walker, R.J., Carlson, R.W., Horan, M.F., Mukhopadhyay, S., Manthos, V., Francis, D., Jackson, M.G. (2016a) Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809-812.

,b

Rizo, H., Walker, R.J., Carlson, R.W., Touboul, M., Horan, M.F., Puchtel, I.S., Boyet, M., Rosing, M.T. (2016b) Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochimica et Cosmochimica Acta 175, 319-336.

; Dale et al., 2017

Dale, C.W., Kruijer, T.S., Burton, K.W. (2017) Highly siderophile element and 182W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland. Earth and Planetary Science Letters 458, 394-404.

; Mundl et al., 2017

Mundl, A., Touboul, M., Jackson, M.G., Day, J.M., Kurz, M.D., Lekic, V., Helz, R.T., Walker, R.J. (2017) Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66-69.

; Kruijer and Kleine, 2018

Kruijer, T.S., Kleine, T. (2018) No 182W excess in the Ontong Java Plateau source. Chemical Geology 485, 24-31.

; Mei et al., 2018

Mei, Q.F., Yang, J.H., Yang, Y.H. (2018) An improved extraction chromatographic purification of tungsten from a silicate matrix for high precision isotopic measurements using MC-ICPMS. Journal of Analytical Atomic Spectrometry 33, 569-577.

; Reimink et al., 2018

Reimink, J.R., Chacko, T., Carlson, R.W., Shirey, S.B., Liu, J., Stern, R.A., Bauer, A.M., Pearson, D.G., Heaman, L.M. (2018) Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry. Earth and Planetary Science Letters 494, 12-22.

; and this study.
Back to article | Download in Powerpoint


Figure 3 Schematic cartoon showing possible processes for core-mantle chemical interaction.
Back to article | Download in Powerpoint