Stable vanadium isotopes as a redox proxy in magmatic systems?

J. Prytulak1*, P.A. Sossi2, A.N. Halliday3, T. Plank4, P.S. Savage5, J.D. Woodhead6

Abstract

Recycling pathways of multivalent elements, that impact our understanding of diverse geological processes from ore formation to the rise of atmospheric oxygen, depend critically on the spatial and temporal variation of oxygen fugacity (f_O) in the Earth’s interior. Despite its importance, there is currently no consensus on the relative f_O of the mantle source of mid-ocean ridge basalts compared to the sub-arc mantle, regions central to the mediation of crust-mantle mass balances. Here we present the first stable vanadium isotope measurements of arc lavas, complemented by non-arc lavas and two co-genetic suites of fractionating magmas, to explore the potential of V isotopes as a redox proxy. Vanadium isotopic compositions of arc and non-arc magmas with similar MgO overlap with one another. However, V isotopes display strikingly large, systematic variations of \sim2 ‰ during magmatic differentiation in both arc and non-arc settings. Calculated bulk V Rayleigh fractionation factors (1000 ln f_O in the range of 0.4 to -0.5 ‰) are similar regardless of the oxidation state of the evolving magmatic system, which implies that V isotope fractionation is most influenced by differences in bonding environment between minerals and melt rather than changes in redox conditions. Thus, although subtle f_O effects may be present, V isotopes are not a direct proxy for oxygen fugacity in magmatic systems.

Introduction

Oxygen fugacity (f_O), the chemical potential of oxygen, varies over ten orders of magnitude in igneous systems (Carmichael, 1991). Knowledge of mantle f_O is of critical importance for understanding the speciation of fluids in subduction zones and thus the efficiency of elemental transfer from slab to surface. Oxygen fugacity is often reported in log units relative to a buffer reaction, commonly fayalite-magnetite-quartz (FMQ). Early study of mantle f_O employed oxygen thermobarometry, proposing that subduction zone magmas and their sources are more oxidised (>FMQ +1) than those found at mid-ocean ridges (<FMQ) (e.g., see review of Frost and McCammon, 2008).

However, the association of mantle f_O with tectonic setting has become contested following the introduction of novel approaches to its determination. The development of new proxies based on ratios of redox to non-redox sensitive elements, such as V/Sc and Fe/Zn, coupled with synthesis of global chemical databases such as GEOROC (http://georoc.mpch-mainz.gwdg.de/georoc/) and PETDB (http://www.earthchem.org/petdb), has led to the counterintuitive proposal that there is no difference in f_O between the mantle sources of arc and MORB lavas (Lee et al., 2005, 2010). Despite this hypothesis, there is a consensus that basaltic melts found in arcs are more oxidised than their MORB counterparts, given, for example, their elevated Fe/ΣFe ratios measured in melt inclusions (e.g., Kelley and Cottrell, 2009). In order to explain how oxidised arc basalts and more reduced MORBs can be derived from sources with similar f_O, processes subsequent to magma generation such as degassing and crystal fractionation have been invoked (e.g., Mallmann and O’Neill, 2009; Lee et al., 2010). Evidence gleaned from both experimental and natural suites is conflicting, with cases of Fe/ΣFe increasing, decreasing and remaining invariant during magmatic degassing and crystallisation (e.g., Brounce et al., 2014; Waters and Lange, 2016). Thus lingering uncertainty as to whether the elevated Fe/ΣFe in arc lavas is derived from their sources or during differentiation fuels continued debate.

The stable isotope composition of multivalent elements is theoretically linked to f_O. High temperature fractionation of stable isotopes is dictated by the vibrational frequencies of chemical bonds, with higher frequencies having larger bond force constants (K) and preferring heavier isotopes. An instructive estimate of the force constant is given by the mean bond strength: the quotient of average valence and co-ordination number (Pauling, 1929). Thus, atoms associated with higher oxidation state and/or lower co-ordination should, on average, incorporate a greater proportion of heavier isotopes. Therefore the possibility of resolving transition metal stable isotope variations in high temperature settings has the potential to define mantle f_O more clearly. Although it is tempting to employ simple comparative geochemistry (i.e. heavier isotope compositions equate to more oxidising conditions), the interplay between co-ordination environment and valence state is vital to interpreting the effect of changing f_O on isotope fractionation.

Vanadium as a Redox Proxy

Vanadium is a moderately incompatible, refractory multivalent ($2^+, 3^+, 4^+, 5^+$) element and the strong dependence of its partitioning behaviour on f_O is well-established (e.g., Canil, 1997; Toplis and Corgne, 2002; Mallmann and O’Neill, 2009). In all major mantle phases, vanadium becomes more incompatible with
increasing fO2, leading to the application of V as a redox proxy (e.g., Shervais, 1982; Canil, 1997; Lee et al., 2005; Mallmann and O’Neill, 2009). However, using concentrations alone results in fO2 uncertainties on the order of 1-2 log units due to variations in degree of melting, original source concentration, and fractionating mineral assemblages (Lee et al., 2003).

Vanadium has two stable isotopes, 53V and 50V. Their ratio is reported as per mille deviations, δ53V, relative to the AA (Alfa Aesar) V solution standard, defined as 0‰ (see Nielsen et al., 2011). The extreme natural 51V/50V ratio of ~420 coupled with isobaric interferences from 50Cr and 50Ti on the minor 50V isotope have historically prevented analyses to a precision useful for high temperature applications. These obstacles were recently overcome, and the first analytical protocol to determine δ51V to a precision better than ±0.15‰ 2sd (Nielsen et al., 2011; Prytulak et al., 2011) demonstrated resolvable variations in igneous rocks of different silica content (δ53Vbasalt < δ53Vandesitized). We present the first δ51V measurements directly exploring the potential of δ51V as a redox proxy in magmatic systems. Specifically, we investigate the effect of magmatic evolution and determine if a resolvable δ51V difference exists between arc and non-arc lavas.

Methods

The oxygen fugacity of the two tectonic settings investigated herein (Mariana arc and Hekla, Iceland) have been previously determined by two independent means: by way of Fe3+/Fe2+ ratios that are converted to fO2, and by Fe-Ti oxysmometry. Both methods indicate that Mariana arc basalts are generally ~1-2 log units more oxidised compared to Icelandic basalts from Hekla (e.g., de Moor et al., 2005; Moune et al., 2007; Brounce et al., 2014; Shorttle et al., 2015). We chose forty whole rock samples from three well-studied lava suites: 1) primitive arc lavas of the Marianas, 2) co-genetic lavas from Anatahan volcano in the Mariana arc (Wade et al., 2005) and 3) co-genetic lavas from Hekla volcano, Iceland (Savage et al., 2011). Published major, trace and isotopic data are found in Table S-1.

Chemical separation and V isotope measurements were made at Oxford University and Imperial College London, following Nielsen et al. (2011). Description of methods and isotopic data are found in the Supplementary Information and Table S-2.

Results and Discussion

Two key observations arise from Figure 1. First, there is a striking range of ~2‰ towards heavy δ51V with progressive differentiation in both suites of lavas, which is an order of magnitude larger than Fe isotope variations in fractionating magmas (e.g., Schuessler et al., 2009; Sossi et al., 2012). Second, basaltic lavas from the Marianas, Iceland and MORB have overlapping δ51V.

The remarkable magnitude of high temperature δ51V fractionation towards heavy values with magmatic evolution is unlikely to be due to the difference in calculated fO2 between Hekla and the Marianas, because the δ51V variation is similar for both suites. Instead, the primary control on isotope fractionation appears to be differences in mineral-melt bonding environment. Oxide minerals such as (titano)magnetite host the majority of V in magmatic systems. Trivalent vanadium is preferentially incorporated in the VI-fold sites of (titano)magnetite, the thermodynamically stable configuration (O’Neill and Navrotsky, 1984) resulting from its high octahedral site preference energy. Vanadium’s oxidation and co-ordination in silicate melts is not constrained by stoichiometry, but is always higher and lower, respectively, than in co-existing (titano)magnetite (Righter et al., 2006). Thus (titano)magnetite (and other ferromagnesian minerals) should be isotopically light, and crystallisation will lead to a progressively heavier residual melt. A significant departure to heavy δ51V is observed at ~60 wt. % SiO2 at Anatahan, and ~55 wt. % at Hekla, although petrographic and chemical evidence demonstrates oxide fractionation occurring earlier in both suites. Indeed, significant (titano)magnetite crystallisation and removal is necessary to impact δ51V signatures whilst melt V concentration is relatively high. We speculate that magma chamber processes at Anatahan, where lavas are generally more evolved, are responsible for the lighter and more variable δ51V in lavas with between 2 and 4 wt. % MgO compared to Hekla (Fig. 1b).

Self-consistent models of fractional crystallisation of cotic phases have been constructed to account for systematic variations in major and trace element concentrations, as well as isotopic compositions in Hekla and Anatahan lavas (Fig. 2). Input parameters and results are provided in the Supplementary Information (Table S-3). Given the strong dependence of V partitioning on fO2,
it is of particular interest to assess how the partition coefficient of V in (titano)magnetite differs between the two suites. A $D_{\text{mag}}^{\text{V}}$ of 32 ± 4 is calculated from analyses of Anatahan lavas (de Moor et al., 2005), a value that reproduces major, trace and isotopic trends very well. The required $D_{\text{mag}}^{\text{V}}$ for Hekla lavas, however, must be significantly higher (~42) to reproduce the data. The relative difference in $D_{\text{mag}}^{\text{V}}$ between the two suites is consistent with lower f_O_2 at Hekla than Anatahan (e.g., Toplis and Corgne, 2002). The same input parameters are used to perform Rayleigh calculations to estimate the bulk V isotope fractionation factor (Fig. 3). Both suites require large $\Delta^{51}V_{\text{min-melt}}$. Fractionation factors on the order of 1000ln$\Delta^{51}V_{\text{min-melt}}$ of -0.4 to -0.5‰. Arguably, a larger fractionation factor is required for Anatahan versus Hekla, however, the effect is subtle and difficult to resolve confidently within the current analytical precision.

Clearly, differences in mineral-melt bonding environment are key to producing large $\delta^{51}V$ fractionations. However, prior to significant (titano)magnetite crystallisation, $\delta^{51}V$ is identical within uncertainties in arc lavas, Icelandic lavas and MORB at similar MgO contents (Fig. 1). If interpreted as a direct f_O_2 proxy, this conflicts with oxybarometry in peridotites, but is notionally consistent with their similar V/Sc ratios. This conclusion hinges, however, upon the assumption of a homogeneous source, both with respect to V/Sc and $\delta^{51}V$, an assumption that may be violated. For instance, $\delta^{51}V$ becomes isotopically lighter in progressively depleted (clinopyroxene-poor) peridotites (Prytulak et al., 2013). This is an important observation because the arc mantle wedge has been inferred
to be markedly depleted (e.g., Woodhead, 1993; Nebel et al., 2015) with respect to the source of MORB. In the absence of a common source, observations of similar V/Sc and $\delta^{51}V$ must be explained.

Primary arc magmas are notoriously rare, thus most information is garnered from basaltic andesites with Mg# too low (~0.5 assuming 20% Fe$^{3+}$) to be in equilibrium with normal mantle (~0.9). Isotope fractionation during partial melting is possible, although high temperatures should minimise the effect. It is, however, perplexing that the well-constrained $\delta^{51}V_{\text{MORB}}$ is isotopically lighter than most peridotites and the bulk silicate Earth ($\delta^{51}V_{\text{BSE}} = -0.7 ± 0.2‰$; Prytulak et al., 2013). The peridotite trend towards lighter $\delta^{51}V$ with progressive depletion thus negates a simple explanation of isotope fractionation during melt extraction (Prytulak et al., 2013). Given the strong effect of mineral-melt fractionation on $\delta^{51}V$, the potential for early phases to change the $\delta^{51}V$ of arc basalts should be considered. Water-rich magmas crystallise Cr-rich spinel before olivine (Feig et al., 2010), potentially scavenging V. Oxide fractionation will drive remaining liquid to heavier $\delta^{51}V$, making early spinel crystallisation a viable mechanism to increase $\delta^{51}V$ in arc magmas. If arc magmas are derived from a depleted source with a lighter initial V isotope composition than the MORB source, it is therefore possible that the competing effects of source depletion and Cr-spinel fractionation result in similar $\delta^{51}V$ in mafic arc and non-arc magmas. Mineral separate data and the analysis of more primitive magmas are required to investigate this premise since it is currently not possible to evaluate the magnitude of isotopic increase due to early Cr-rich spinel, and/or partial melting, as there are no combined V concentration and $\delta^{51}V$ on spinel and scut peridotite whole rock data.

If arc magmas are derived from mantle more depleted than MORB, their sources should have lower $\delta^{51}V$ and V/Sc. The decrease of V/Sc in the source
will be exacerbated if prior melt-depletion occurs at high \(f_O^2 \). Therefore, the observation of similar \(\delta^{51}V \) and V/Sc ratios in high MgO lavas from both settings can be interpreted as evidence of melting of more depleted, oxidised sources in arcs. This concept is illustrated with two hypothetical sources in Figure 4a, with examples of simple forward trace element modal (Fig. 4b) and non-modal (Fig. 4c) melting models comparing V/Sc in lavas derived from these two sources. Overall, the effect of source depletion (i.e. less V) coupled with higher \(f_O^2 \) (and thus lower \(D_V \)), can offset a more fertile (i.e. more V) less oxidised (higher \(D_V \)) source to yield similar V/Sc in resulting melts. Thus the confluence of \(\delta^{51}V \) and V/Sc in arc and MORB lavas may paradoxically require differences in their source \(f_O^2 \). Clearly, there are many possible solutions to such models, and the absolute values of V/Sc are very sensitive to input parameters (see Supplementary Information), however, given the assumption of a more oxidised, depleted arc source, the similarity of V/Sc in arc lavas and MORB at 10-15% melt is relatively straightforward to reproduce.

Irrespective of the trade-offs involved in interpretation of relative oxidation states of arc and non-arc lavas, Rayleigh fractionation of oxide phases is dominantly responsible for the magnitude of observed V isotope fractionation in differentiating magmatic suites. Subtle \(f_O^2 \)-related variations are perhaps overprinted onto first order bonding-environment induced fractionations, but these require a much richer understanding of \(\delta^{51}V \) variations during magmatic processes to be applicable. Therefore, elemental partitioning of V yields a more direct relationship with \(f_O^2 \) than the current understanding of V isotopes at high temperatures permits.

Acknowledgements

JP was funded by NERC postdoctoral fellowship NE/H01313X/2, with support of the Oxford laboratories from an Advanced ERC grant (NEWISOTOPEGEOSCIENCE) to ANH. PAS by an APA PhD scholarship and ANU Vice-Chancellor’s Scholarship. We appreciate thoughtful reviews by F. Poitrasson and G. Mallmann. Tim Elliott is thanked for providing CIP samples. Although he may not necessarily agree with all the ideas presented, we thank Hugh O’Neill for many formative discussions.

Editor: Bruce Watson

Additional Information

Supplementary Information accompanies this letter at www.geochemicalperspectivesletters.org/article1708

This work is distributed under the Creative Commons Attribution 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Additional information is available at http://www.geochemicalperspectivesletters.org/copyright-and-permissions.

References

