Running out of gas: Zircon 18O-Hf-U/Pb evidence for Snowball Earth preconditioned by low degassing

J. Hartmann1, G. Li2, A.J. West3

Abstract

The general long-term stability of Earth’s climate over geologic time was punctuated by dramatic excursions. Between ca. 2.5 and 0.5 billion years ago (Ga), these events included the globally extensive glaciations known as Snowball Earths, when ice extended to tropical latitudes. Such anomalous periods of time provide unique opportunities for understanding the mechanisms regulating planetary climate and habitability. However, the causes of these events remain enigmatic, in part because there is little information about fluxes in the global carbon cycle in deep time. We propose that the oxygen stable isotope composition in zircons (δ^{18}O$_{\text{zircon}}$) contains information about past weathering conditions on the continents, imparted during the time between separation of parent material from the mantle (reflected in the Hf model age) and zircon crystallisation (the U/Pb age). A new compilation of coupled 18O-Hf-U/Pb isotopic data shows that the mean δ^{18}O$_{\text{zircon}}$ value varied particularly between 2.5 Ga and 0.5 Ga. The maximum in the δ^{18}O$_{\text{zircon}}$ record, which we interpret as a time of intense weathering, is associated with the Lomagundi Event (~2.22–2.07 Ga), a dramatic carbon isotope excursion thought to reflect enhanced organic carbon burial facilitated by the release of phosphorous during rock weathering. The onset of the Neoproterozoic Snowball Earth events coincides with the minimum in δ^{18}O$_{\text{zircon}}$, suggesting low silicate weathering rates at the time. This evidence suggests that long-term decreases in the rate of CO$_2$ release to the atmosphere from solid Earth degassing may have preconditioned the global climate system for intense glaciations.

Letter

Over geologic time, Earth’s climate is regulated by the fluxes of carbon to and from the coupled ocean-atmosphere system, specifically by the balance between solid Earth degassing, the consumption and release of CO$_2$ via rock weathering, and the burial and oxidation of organic carbon (Berner, 2004). For most of Earth’s history, the sources and sinks of atmospheric CO$_2$ have remained in close balance, maintaining the planet’s equable climate (Walker et al., 1983; Berner and Caldeira, 1997). The large carbon cycle anomalies observed in the sedimentary record of the Archean and Proterozoic eras represent puzzling deviations from this general stability (Hoffman et al., 1998; Goddéris et al., 2003; Bekker and Holland, 2012; Lyons et al., 2014). Understanding the causes of these events requires information about the carbon cycle at the time, which remains scarce. Geochemical evidence from marine sediments, such as records of 87Sr/86Sr or δ^{13}C, is subject to multiple interpretations (e.g., Kump, 1989; Goddéris et al., 2017). For example, the evolution of seawater 87Sr/86Sr over geological time (McArthur et al., 2012) may be influenced by changes in degassing and hydrothermal activity, continental weatherability, and the isotopic composition of rocks undergoing weathering (Kump, 1989). Without independent constraints, marine isotopic records cannot distinguish between these possibilities, each with different implications for the carbon cycle.

Zircons may provide information about carbon cycle fluxes that is independent of the multiple factors affecting seawater composition. The Hf isotopic composition of a zircon reflects the time when the grain’s unmixed parent material separated from the depleted mantle reservoir (Griffin et al., 2002; Hawkesworth and Kemp, 2006). In contrast, the U/Pb age of a zircon records the last time the mineral experienced temperatures above the closure threshold for the Pb system (>1000 °C), and thus the crystallisation age (Mezger and Krogstad, 1997). The difference between the Hf and U/Pb ages, here termed $\Delta T_{\text{Hf-U/Pb}}$, represents the time interval during which zircon parent material could have been affected by weathering and magmatic processes (Fig. 1), leaving an imprint on δ^{18}O$_{\text{zircon}}$ (Valley et al., 2005). The contribution from even small amounts of altered crustal material can increase δ^{18}O$_{\text{zircon}}$ Values above the primary mantle signature of $\sim-5.3 \pm 0.3 \%$, because altered crust is isotopically enriched as a result of weathering by meteoric fluids (Savin and Epstein, 1970; Gregory and Taylor, 1981; Bindeman et al., 2016). The extent of isotopic enrichment for a given zircon grain will depend on the amount...
of weathering-related contamination of the parent magma, which is related to the alteration state of the crustal material (Valley et al., 2005). More intense chemical weathering and clay formation on the continents will produce more weathered sedimentary material, with heavier δ¹⁸O, increasing the potential for elevating δ¹⁸O_{zircon} (Valley et al., 2005; Payne et al., 2015; Bindeman et al., 2016). Thus, a grain’s δ¹⁸O_{zircon} value should preserve some information about the weathering conditions during that grain’s ΔT_{Hf-U/Pb} time interval. While petrologic processes and magma chamber conditions such as oxygen fugacity may also influence δ¹⁸O_{zircon} by changing fractionation factors (Valley, 2003), we propose that, when averaged over grains from around the world, δ¹⁸O_{zircon} reflects globally averaged weathering conditions during a given ΔT_{Hf-U/Pb} interval.

We have compiled published δ¹⁸O-Hf-U/Pb zircon data from predominantly detrital zircons – including in total 4444 grains with coupled information for all three isotopic systems (i.e., all three analyses made on the same zircon crystal). These data span 4.4 Ga of Earth’s history. We have calculated ΔT_{Hf-U/Pb} for each grain and evaluated the δ¹⁸O of the zircons that fall within a given ΔT_{Hf-U/Pb} window. We argue that shorter windows are most likely to provide information about crustal weathering conditions during a given ΔT_{Hf-U/Pb} window. Long windows may incorporate mixing of material with different Hf-derived mantle extraction ages (Fig. 1) and also reflect the accumulated effects of reworking over long periods of time, potentially subject to long-term tectonic controls on the extent of low temperature contribution to the δ¹⁸O signature. Even for short ΔT_{Hf-U/Pb}, any individual zircon’s δ¹⁸O will be influenced by the tectonic and petrologic history of that grain’s parent magma, which is likely specific to its regional origin. Thus, when plotting data from all individual grains, a very large spread is observed in δ¹⁸O_{Hf-U/Pb}, values for any given U/Pb crystallisation age (Valley et al., 2005; Payne et al., 2015, 2016). By aggregating many hundreds to thousands of grains from detrital sources, we seek to extract the average conditions that are most likely to represent the state of crustal alteration for defined time slices, rather than the specific history of individual zircons.

We have calculated a moving average of δ¹⁸O_{zircon} over time, using a Gaussian filter. Specifically, for each time t, beginning at 4 Ga and proceeding in 50 Ma increments, we begin by calculating a weighting factor for all zircon data points. The weighting factor is determined by each zircon’s age with respect to the normal distribution centred at time t, with standard deviation of 100 Ma, thus giving zircons closer to t a higher weight and effectively giving zero weight to zircons more than a few hundred million years from t. For zircon age, we average the Hf model age and the U-Pb age of each grain, to reflect the midpoint of the assumed processing time during which the grain’s parent material acquired its δ¹⁸O composi- tion. We estimate a representative δ¹⁸O_{zircon} value for time t by calculating a mean weighted δ¹⁸O_{zircon} for all data points. The standard deviation of the mean δ¹⁸O_{zircon} for time t is similarly calculated with the Gaussian weighting (±2 standard deviation shown by grey envelopes in the Figures and the Supplementary Videos).

We include only zircons that fall within a given ΔT_{Hf-U/Pb} window, while varying the size of the ΔT_{Hf-U/Pb} window from 50 Ma to 1500 Ma (see Supplementary Videos, where the number of grains considered and the mean ΔT_{Hf-U/Pb} for each time window is reported). Figure 2 shows examples, with average zircon δ¹⁸O plotted versis time for ΔT_{Hf-U/Pb} ranging from 50 to 450 Ma. For low ΔT_{Hf-U/Pb} (<300 Ma) the number of total data points is low (<1000 grains total), leading to larger uncertainties (Fig. 2). There is thus a tradeoff between focusing on short time windows (over which there are too few data from zircon grains to provide a conclusive picture) versus longer time windows (which average over longer periods of time, reducing the temporal resolution for relating to specific geologic events). For ΔT_{Hf-U/Pb} of 350–500 Ma, uncertainties are reduced and distinct patterns emerge in the data, with first order minima and maxima that remain stable across a wide range of ΔT_{Hf-U/Pb}. This stability suggests these features are not artefacts of the data analysis. In the discussion that follows, we focus on the time-evolution of δ¹⁸O_{zircon} calculated for grains with ΔT_{Hf-U/Pb} < 400 Ma, which is representative of the first order patterns and still sufficiently short to relate to major changes in the environmental state of the Earth system. We primarily report results based on the New Crust Hf age model (Dhuime et al., 2011; Payne et al., 2016). For comparison, the same calculations are also presented in the Supplementary Information (Figs. S-1 and S-2) using the traditional TDM Hf model age, revealing basically the same picture.
Figure 2 Time evolution of $\delta^{18}O_{\text{zircon}}$ calculated for different values of $\Delta T_{\text{Hf-U/Pb}}$ as selection criterion (see also Supplementary Video S-1). The very short values of $\Delta T_{\text{Hf-U/Pb}}$ restrict the total number of grains in the dataset to a small number (<1000 grains if $\Delta T_{\text{Hf-U/Pb}}<$300 Ma using the New Crust Hf model age, shown here), leading to large uncertainties, although some of the first order features are still evident (e.g., a maximum ~2 Ga and minimum ~0.8 Ga). For longer $\Delta T_{\text{Hf-U/Pb}}$ windows, the uncertainties are much reduced and general patterns are stable across a range of window sizes. For very large $\Delta T_{\text{Hf-U/Pb}}$ (e.g., >1000 Ma; see Supplementary Video S-1) the $\delta^{18}O_{\text{zircon}}$ curve represents a long-term accumulated signal that is difficult to tie to specific geologic events because of the long integration window. The grey band represents ±2 s.d. (s.d.: standard deviation of the mean). Blue bars represent periods of glaciations in the late Archean and in the Neoproterozoic. The green bar covers the period of the Lomagundi event. Also see Figure 3.

In comparing the trends in $\delta^{18}O_{\text{zircon}}$ with the timing of geological events (Fig. 3), it is important to note that the $\delta^{18}O_{\text{zircon}}$ values aggregate effects over a time interval between the Hf model age and the U-Pb age. The timescale in Figure 3 represents average values focused at the midpoint of this interval (see above), but the weathering signature is likely to have been acquired over a longer period of time, so each time point on Figure 3 actually reflects a range of time. The size of the prescribed $\Delta T_{\text{Hf-U/Pb}}$ selection time window puts a maximum limit on this duration (in the case of Fig. 3, 400 Ma). In practice, the actual $\Delta T_{\text{Hf-U/Pb}}$ values for individual grains are often shorter than the maximum prescribed window. In the case of Figure 3, the mean $\Delta T_{\text{Hf-U/Pb}}$ is 225 Ma. This reflects the typical time over which the effects of weathering are expected to have left an imprint in the $\delta^{18}O_{\text{zircon}}$ and thus a characteristic uncertainty on the time axis of Figure 3. To facilitate comparison, this duration is illustrated by the lighter shading on the timing of geological events; this shading does not reflect uncertainty on the timing of these events themselves but rather reflects the temporal resolution of the $\delta^{18}O_{\text{zircon}}$ curve. The mean $\Delta T_{\text{Hf-U/Pb}}$ for zircons actually varies somewhat as a function of time. Supplementary Information
Figure S-3 shows δ₁₈Ο₉ircon curves accounting for this variability by calculating the weighted standard deviation of the age at each time t. As expected, the variance in age (2 standard deviation) is ~0.1–0.2 Ga and is similar over the 4 Ga record, indicating that the single average value of 225 Ma in Figure 3, while a simplification, captures the characteristic uncertainty in the time dimension.

In common with prior studies, we see relatively little variability in δ₁₈Ο₉ircon until ~2.5 Ga, considering the patterns of long-term evolution over 4 Ga (Valley et al., 2005; Payne et al., 2015). After 2.5 Ga, we observe that the minimum and maximum in the δ₁₈Ο₉ircon record coincide with two of the most pronounced carbon cycle perturbations in the geologic record. Specifically, the rise towards the highest δ₁₈Ο₉ircon in the record coincides with the Lomagundi carbon isotope excursion (ca. 2.22–2.07 Ga) (Bekker and Holland, 2012), while the lowest δ₁₈Ο₉ircon in the record corresponds to the Neoproterozoic Snowball Earth events and the framing Kaigas, Gaskiers, and Vingerbreek glaciations (ca. 0.75–0.55 Ga) (Germs and Gaucher, 2012; Hofmann et al., 2015). Moreover, the Archean global glaciations (ca. 2.45–2.24 Ga) (Gumsley et al., 2017) also coincide with a local minimum in δ₁₈Ο₉ircon. Periods of supercontinent assembly (Cawood et al., 2013) appear to occur at similar times to peaks in δ₁₈Ο₉ircon (Fig. 3) and mature supercontinents with periods of lower δ₁₈Ο₉ircon, except during Gondwana-Pangea formation and breakup of the last 0.7 Ga.

The Lomagundi carbon isotope excursion (Karhu and Holland, 1996; Bekker and Holland, 2012; Lyons et al., 2014) occurs as δ₁₈Ο₉ircon rises towards the highest values in the geologic record (Fig. 3), suggesting the possibility of intense weathering at the time. High weathering intensity may have resulted from high mantle degassing due to vigorous convection (Condie et al., 2001, 2016; Grenholm and Scherstén, 2015), or to the onset of oxidative weathering following the rise of atmospheric O₂ (Bekker and Holland, 2012; Planavsky et al., 2012). Abundant Al-rich shales and quartz-rich sandstones at the time have been cited as evidence for intense weathering conditions (Bekker, 2014), and the extremely enriched δ¹³C values in carbonates have been explained by large amounts of organic carbon burial, resulting from enhanced biological productivity facilitated by the release of phosphorous (a limiting nutrient) during rock weathering (Bekker and Holland, 2012; Harada et al., 2015). The zircon record is consistent with this hypothesis, lending some confidence to interpretation of δ₁₈Ο₉ircon as reflecting global weathering conditions.
The minimum in $\delta^{18}O_{zircon}$, coinciding with the beginning of the Neoproterozoic Snowball Earth events points to a decreased imprint of weathered crust in parent magmas at these times. We suggest this signal is indicative of low weathering intensity on the continents. In simplistic terms, if glaciations were caused by drawdown of atmospheric CO$_2$ via enhanced silicate weathering, as suggested in prior studies (Goddéris et al., 2003; Donnadieu et al., 2004; Pierrehumbert et al., 2011), the opposite would be expected, namely higher weathering intensity and thus elevated $\delta^{18}O_{zircon}$, immediately preceding and during glaciation. Global weathering fluxes should balance degassing fluxes over timescales $>$1 Ma, because of climate-dependent weathering feedbacks (e.g., Berner and Caldeira, 1997). Thus, we propose that the minima in $\delta^{18}O_{zircon}$ reflect times of low solid Earth CO$_2$ degassing, which preconditioned the Earth system for glaciation by forcing a state of low atmospheric pCO$_2$. Low degassing flux has similarly been suggested as an underlying cause of icehouse climate states based on compilations of zircon abundance over the past \sim0.7 Ga (McKenzie et al., 2016).

The data presented here average over long periods of time (100s of millions of years to yield a sufficient number of grains in each time interval to extract a robust pattern). As a consequence, the results do not preclude an immediate triggering of glaciation by changes in weathering fluxes and CO$_2$ drawdown, for example by enhanced weathering of continental crust, large igneous provinces, or submarine basalt (Goddéris et al., 2003; Donnadieu et al., 2004; Gernon et al., 2016). Relatively low background levels of atmospheric pCO$_2$ resulting from low degassing fluxes, could have set up the system for the onset of Snowball Earth, which then occurred as an immediate result of enhanced weathering events without requiring anomalously intense weathering, since pCO$_2$ can be more easily reduced to the levels required for runaway glaciation when the background concentrations are low. Thus, we suggest that enhanced weathering, as may have occurred during super-continent breakup, might have been the immediate trigger, but that a long-term trajectory of low degassing set the stage for globally extensive glaciation.

The subsequent increase in $\delta^{18}O_{zircon}$ as glaciations continued (i.e. leading up to 0.5 Ga) might have been influenced, at least in part, by intense weathering after glaciations (e.g., Hoffman et al., 1998) and submarine basalt weathering (Gernon et al., 2016).

Whether similar conditions prevailed at the time of the earlier Archean glaciations remains unclear from the zircon data (e.g., see suggested mechanisms for the onset of Palaeoproterozoic glaciations; Teitler et al., 2014), and we emphasise that the long integration window of the zircon data preclude interpretation of trends in Figure 3 in terms of individual episodes of glaciation such as specific Snowball Earth events.

Elevated values of $\delta^{18}O_{zircon}$ at times of supercontinent assembly (i.e. immediately preceding the red bars in Fig. 3) may be related to tectonically enhanced exchange of sediments with magma reservoirs (Spencer et al., 2014). Incorporation of sediments into melts can occur within a 100 Ma time window (Payne et al., 2015), short enough for the signal to propagate into the zircon record. The zircon record at times of continental assembly may also reflect increased degassing during collision (Bickle, 1996; Kerrick and Caldeira, 1998), generating high weathering fluxes and thus more altered crustal material.

As each supercontinent matured, solid Earth degassing rates and sediment exchange may have diminished, decreasing $\delta^{18}O_{zircon}$ values. More broadly, we speculate that the overall peak in $\delta^{18}O_{zircon}$ around 2 Ga and the decrease towards the present day may be attributed to diminished overall mid-ocean ridge mantle degassing rates with time due to depletion of carbon in the mantle reservoir undergoing degassing (Hofmann, 1988), if little subducted carbon is recycled into the convecting mantle (Kelemen and Manning, 2015).

In summary, based on the 4444 coupled $\delta^{18}O$-Hf-U/Pb data compiled in this study, we have identified peaks and valleys in the $\delta^{18}O_{zircon}$ record, particularly between 2.5 and 0.5 Ga, that can be pinned to $<$250 Ma time intervals on the basis of ΔHf-U/Pb. We suggest that changes in continental weathering can explain these observed variations in a manner that is mechanistically consistent with the alteration of crustal material leaving a characteristic isotopic signature in zircon parent material. Inferred changes in continental weathering over time help to explain first order geologic events including the Neoproterozoic Snowball Earth episodes, which we argue based on the zircon record were preconditioned by low solid Earth degassing over the long-term. More rigorous testing of these hypothesised relationships will require better understanding of the links between increases in $\delta^{18}O_{zircon}$, the propagation of altered crust isotopic signature into parent magmas, and global continental weathering conditions.

Additional data collection and analysis, for example at higher temporal resolution, could help to refine understanding of relationships between $\delta^{18}O_{zircon}$ and weathering conditions, including identifying the optimal ΔHf-U/Pb that captures the effect of geological events on the $\delta^{18}O_{zircon}$ signal.

It might be possible to scale $\delta^{18}O_{zircon}$ with changes in mantle degassing rate, given sufficient information about fractionation during weathering and incorporation of this signal into crustal melts, opening the possibility of extending the evaluations considered in this study to semi-quantitatively interpretations. But with present constraints, the proxy remains qualitative, and indeed many factors other than continental weathering are likely to influence the $\delta^{18}O$ of zircons. Nonetheless, even without a further leap of quantitatively linking $\delta^{18}O_{zircon}$ to carbon fluxes, we propose that coupled $\delta^{18}O$-Hf-U/Pb data from zircons have the promise to illuminate links between mantle dynamics, plate tectonics, and weathering processes, helping to unravel the processes regulating Earth's carbon cycle and climate over geologic time.

Acknowledgements

This work was supported by the German Science Foundation DFG (Cluster of Excellence ‘CLISAP,’ EXC177, Universität Hamburg), the National Natural Science Foundation of China (grant nos. 41422205 and 41730101), and the US National Science Foundation (grant no. 1338329). The authors thank Wagner de Oliveira Garcia and Thorben Amann for help copying the data and making the videos. T.M. Gernon and one anonymous reviewer are thanked for constructive comments, and E. Oelkers for editorial handling.

Editor: Eric Oelkers

Author contributions

J.H. and G.L. designed the study. J.H. collected the data. J.H., G.L., A.J.W. conducted the research and wrote the manuscript.

Additional Information

Supplementary Information accompanies this letter at www.geochemicalperspectivesletters.org/article1734
References

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Goldschmidt, V.M. (1964) The nature and extent of a late Ediacaran (ca. 547 Ma) glacial ice sheet in the south polar region of Terra Nova. Geol Soc Am Bull 75, 884–892.

Running out of gas: Zircon 18O-Hf-U/Pb evidence for Snowball Earth preconditioned by low degassing

J. Hartmann1*, G. Li2, A.J. West3

Supplementary Information

The Supplementary Information includes:
- Selection of Data
- Differences in the Hf Model Age Calculations
- Videos S-1 and S-2 (available online only)
- Figures S-1 to S-3
- Tables S-1 and S-2
- Supplementary Information References

Selection of Data

In addition to a previously published compilation of coupled 18O-Hf-U-Pb data from zircons (Dhuime et al., 2012), data were compiled from 18 other literature sources reporting detrital zircon analyses (Table S-1). Data were included for zircons with values for 18O, U/Pb-age, and Lu and Hf isotopes measurements all on the same grain, with the latter allowing calculation of Hf model ages. Datasets were copied from supplementary source files of the given publications or from tables provided in the publications.

In most cases, U/Pb age was reported in the source publication, though in some cases ages were not reported and were calculated based on published isotope ratios. In latter cases, data were restricted to results showing discordance less than 10 % for the 207Pb/206Pb, 206Pb/238U and 207Pb/235U age.

176Lu/177Hf and 180Hf/177Hf isotope ratios were used to calculate the New Crust and the TDM Hf-model ages following the approach and data provided by Payne et al. (2016), with $\lambda = 1.865 \times 10^{-11}$ a$^{-1}$ (the decay constant for 176Lu). 177Hf/177Hf = 0.283251 for the CHUR-like composition, and 176Lu/177Hf$_{DM}$ = 0.0384 for the today’s depleted mantle (DM is depleted mantle). The New Crust and TDM Hf model ages were newly calculated with these parameters for all compiled data, using the published isotope ratios.

In 22 and 92 cases, the difference between the Hf model ages (traditional TDM and New Crust, respectively) and the U/Pb-age was negative and set to zero. Reported rim-data from Zeh et al. (2014) were removed.

Table S-1

<table>
<thead>
<tr>
<th>Source Reference</th>
<th>Number of data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canile et al. (2016)</td>
<td>170</td>
</tr>
<tr>
<td>Castillo et al. (2016)</td>
<td>167</td>
</tr>
<tr>
<td>Davis et al. (2015)</td>
<td>128</td>
</tr>
<tr>
<td>Ge et al. (2014)</td>
<td>37</td>
</tr>
<tr>
<td>Herve et al. (2013)</td>
<td>149</td>
</tr>
<tr>
<td>Hollis et al. (2014)</td>
<td>184</td>
</tr>
<tr>
<td>Iizuka et al. (2013)</td>
<td>442</td>
</tr>
<tr>
<td>Jiang et al. (2015)</td>
<td>158</td>
</tr>
<tr>
<td>Li et al. (2012)</td>
<td>257</td>
</tr>
<tr>
<td>Meinhold et al. (2014)</td>
<td>29</td>
</tr>
<tr>
<td>Pankhurst et al. (2016)</td>
<td>161</td>
</tr>
<tr>
<td>Partin et al. (2014)</td>
<td>130</td>
</tr>
<tr>
<td>Wang et al. (2012)</td>
<td>125</td>
</tr>
<tr>
<td>Yang et al. (2015)</td>
<td>324</td>
</tr>
<tr>
<td>Yin et al. (2012)</td>
<td>131</td>
</tr>
<tr>
<td>Zeh et al. (2014)</td>
<td>132</td>
</tr>
<tr>
<td>Zhang et al. (2016)</td>
<td>143</td>
</tr>
<tr>
<td>Zhang et al. (2014)</td>
<td>201</td>
</tr>
</tbody>
</table>

Count new sources: 3068

Dhuime et al. (2012): 1376

Sum of all used data points: 4444
Differences in the Hf Model Age Calculations

The differences between the TDM and New Crust Hf model ages result in slightly younger ages, of on average 150 Ma, for the New Crust Hf model ages. The location of discussed minima and maxima in the time series therefore shift slightly. The main conclusions if comparing results applying both Hf model age types do not change, i.e. the minima and maxima as discussed in the main text are still within the time window of relevance for given geological events. Results based on the traditional TDM Hf model age calculation are shown in Figures S-1 and S-2.
Figure S-2. Results as in Figure 3 in the main text, but using the traditional TDM Hf model age instead of the New Crust Hf model age. Note that, due to the difference in the calculation procedure, the New Crust Hf model age for single grains provides on average 150 Ma shorter ages than the TDM Hf model age. Dark blue bars represent periods of glaciations in the late Archean and in the Neoproterozoic. The dark green bar covers the period of the Lomagundi event. To illustrate the effect on comparison between the timing of geological events and the δ^{18}O$_{zircon}$ curve, lighter shaded areas around periods of geological events reflect uncertainty of the δ^{18}O$_{zircon}$ curve associated with plotting the curve for the midpoint between the Hf and U/Pb ages, given as half of the mean $\Delta T_{\text{Hf-U/Pb}}$ (140 Ma).

Figure S-3 Results as in Figure 3 in the main text, but with analysis of variance in ages for the population of zircons with $\Delta T_{\text{Hf-U/Pb}} < 400$ Ma. The black line shows δ^{18}O$_{zircon}$ using the weighted mean zircon age of the selected data, when age is weighted using the same Gaussian filtering procedure as applied to the δ^{18}O$_{zircon}$ data in Figure 3 in the main text. As expected, the weighted age (black line) plots very similarly to the actual ages used in Figure 3. The dashed blue and red lines show δ^{18}O$_{zircon}$ plotted against time considering variance in the ages of the zircon population, specifically the weighted ±1 standard deviation of the age using the same Gaussian filtering as applied to the δ^{18}O$_{zircon}$ data for the midpoint ages (blue: minus 1 s.d.; red: plus 1 s.d.). Weighted variance in ages ranges from 66 to 130 Ma and does not change systematically over time, so we consider the single average value reported in the text (225 Ma) as representative of the time resolution of the record for a $\Delta T_{\text{Hf-U/Pb}}$ window <400 Ma.
Supplementary Videos

The supplementary videos (available in the online version of this letter at http://www.geochemicalperspectivesletters.org/article1734) show the evolution of the $\delta^{18}O$ time series with increasing $\Delta T_{\text{Hf-U/Pb}}$ time window as selection filter for both approaches to calculate the Hf-model age. The videos also provide for each time step the number of included data points and the mean $\Delta T_{\text{Hf-U/Pb}}$ for data points fulfilling the selection criterion.

Video S-1 This supplementary video shows the evolution of the $\delta^{18}O$ time series with increasing $\Delta T_{\text{Hf-U/Pb}}$ time window as selection filter for the New Crust Hf model age. The video also provides for each time step the number of included data points and the mean $\Delta T_{\text{Hf-U/Pb}}$ for data points fulfilling the selection criterion.

Video S-2 This supplementary video shows the evolution of the $\delta^{18}O$ time series with increasing $\Delta T_{\text{Hf-U/Pb}}$ time window as selection filter for the traditional TDM Hf model age. The video also provides for each time step the number of included data points and the mean $\Delta T_{\text{Hf-U/Pb}}$ for data points fulfilling the selection criterion.

Supplementary Data Table

Table S-2 is available for download at http://www.geochemicalperspectivesletters.org/article1734.

Table S-2 Applied data including $\delta^{18}O$, hafnium and lutetium isotopic data, the uranium-lead-isotope age and references. (a) New compiled data. (b) Dhuiime et al. (2012) data.

Supplementary Information References

