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Griffin et al. (2018) discard our lightning experiments because 
we did not identify ultra-high pressure (UHP) phases. Our 
experiments (Ballhaus et al., 2017) provide the first rational 
explanation of many unusual findings in the so-called UHP 
ophiolites and hence undermine the foundations on which 
the resulting speculative geotectonic scenarios are based. 
Little room seems left to postulate that ultramafic rocks along 
the Jarlung-Zangbo suture zone have seen Transition Zone 
(TZ) pressures (McGowan et al., 2015; Griffin et al., 2016a); 
that chromite crystallised as high pressure polymorph in the 
calcium ferrite (CF) structure (Xiong et al., 2015); or that the 
upper mantle is super-reduced (Griffin et al., 2016b).

(1) Griffin et al. (2018) assert that there is no confirmed 
textural connection of ultra-reduced phases with UHP 
minerals. That is incorrect. Yang et al. (2007) document 
symplectites from Luobusa rocks in which Fe-Ti-Si alloys are 
intergrown with pseudomorphs of coesite after stishovite.

(2) The glass composition Griffin et al. (2016b) report 
from Mount Carmel has 4.8 wt. % MgO and zero FeO. That 
melt is not in equilibrium with an upper mantle mineralogy. 
So how could one speculate that ultra-reduced phases like 
Ti2O3, Fe-Si alloys, Ti nitrides and borides inside that glass are 
diagnostic of mantle redox states?

(3) Griffin et al. (2018) doubt that the diamonds of Luobusa 
are vapour deposited (CVD) diamonds. We brought up the 
CVD option because we synthesised shell fullerenes, known 
to be potential precursors to diamond. Alternative origins 
are (1) isochoric shock heating following lightning bolts: the 
Popigai astrobleme (Koeberl et al., 1997) was also short-lived 
but did produce diamonds millimetres in size, so the size-
time argument may not be valid; and (2) contamination: all 
transition elements Griffin et al. (2016a) found concentrated in 
metal inclusions in Luobusa diamonds are used in industry to 
flux the graphite-diamond transition (Sung and Tai, 1997). We 
consider a mantle origin unlikely. How could mantle diamonds 
have coexisted with Fe-free Ni70Mn20Co5 metal melts (Griffin 
et al., 2016a) when the lithologies that supposedly carried those 
diamonds (chromitite, harzburgite) are ferrous and ferric iron 
bearing? Based on nitrogen aggregation states, Howell et al. 

(2015) calculate for the Luobusa diamonds residence times of 
~100 years. Why are the implications of this important finding 
being ignored?

(4) Griffin et al. (2016a) document oxide and silicate 
spherules and relate them to an unspecified high tempera-
ture event. Are the authors aware of magmatic activity that 
produces near-perfectly spherical wüstite globules? Zuxiang 
(1984) suggested the globules are extraterrestrial in origin 
because he identified Fe-Si alloys in their cores. We reproduce 
those spherules with electric discharges in all detail, and we 
offer a sensible explanation: they are ejecta of plasma fountains 
released from lightning flash tubes, quenched and oxidised 
extremely rapidly in air.

(5) Griffin et al. (2016a), Yamamoto et al. (2009), and 
Xiong et al. (2015) assert that podiform chromite crystallises 
(or recrystallises) in the CF structure at >12 GPa because it 
carries clinopyroxene exsolutions. In the Griffin et al. (2016a) 
scenario, chromite is first enriched to ore grades at low pres-
sure, then subducted to 600 km, then exhumed back to the 
surface. Along that path, magmatic chromite would recrystal-
lise twice: first at high pressure in the CF structure to incor-
porate the silicate component, then back to spinel to exsolve 
silicate in the form of clinopyroxene needles. Are the authors 
aware that liquidus chromite also incorporates SiO2 and CaO 
to the tune of 0.3 wt. % each (Barnes, 1986; Kinzler, 1997)? 
That is more than enough to exsolve clinopyroxene needles 
during annealing. As for the inverse ringwoodite octahedra 
brought up by Griffin et al. (2016a) in support of their UHP 
model, we wait for the site occupancies of the cations based 
on structural refinement data and/or High Resolution Trans-
mission Electron Microscopy (HRTEM) images. As for coesite, 
isochoric heating following lightning strikes may reach pres-
sures well inside coesite stability (Chen et al., 2017).

(6) If the mantle sections of the Tibetan ophiolites were 
subducted to 600 km then exhumed, why after emplacement 
are ultramafic lithologies juxtaposed to gabbros? Gabbro 
cumulates do not tolerate pressures above 1 GPa, neither 
texturally nor mineralogically. In the Luobusa ophiolite, the 
classic ophiolite lithostratigraphy appears to be preserved 
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(Xuchang et al., 1983) even though it may have been modified 
during obduction. Should we assume then that at Luobusa, 
the juxtaposition of harzburgite and dunite to gabbros is coin-
cidental? Or did the gabbros wait patiently in place while the 
ultramafic sections of the ophiolite were being cycled down 
and up through the TZ for 1200 km?

(7) We are not convinced that lithologies with zero pres-
sure densities around 3300 kg m-3 could have been exhumed 
so easily from 600 km depths over 2000 km along the Jarlung-
Zangbo suture zone. Diamonds are reported in ophiolites 
along that suture for 1300 km (!) along strike (Howell et al., 
2015). No numerical model covers exhumations from TZ pres-
sures on such grand scales.

Thirty years of research failed to acknowledge similar-
ities between phases in the so-called UHP ophiolites and in 
fulgurites. This is surprising. Chromitites and serpentinised 
(magnetite bearing) harzburgites are electrically quite conduc-
tive. At the elevation of the Tibetan ophiolites cloud-to-ground 
lightning bolts are common (Qie et al., 2003). When lightning 
hits solid rock, a thermal pulse is generated that may impose 
extreme shock pressures in excess of 10 GPa (Chen et al., 
2017). The fulgurite glasses resulting may carry a wide range 
of super-reduced minerals including metallic Fe, Si, Fe-S-Ti 
alloys, and moissanite (Essene and Fisher, 1986; Plyashkevich 
et al., 2016). If these exotic phases are recovered from oxidised 
FeO-Cr2O3 bearing lithologies, should we not search for other 
terrestrial occurrences in rocks from tectonic settings that 
cannot have seen high pressure?

Griffin and coworkers should analyse Luobusa diamonds 
for radiogenic carbon.
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