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Supplementary Methods

Eruption age estimation
Given a dataset of mass-spectrometrically determined closed-system mineral crystallisation ages from a given volcanic unit, we
wish to determine the time of eruption (or deposition) subject the one-sided a priori constraint that no such ages may postdate
eruption. We represent this prior knowledge in the form of a crystallisation distribution that is sharply truncated at eruption. In the
first (and simplest) case of a single magma batch, the remarkable convergence of kinetic (Watson, 1996), thermodynamic (MELTS +
zircon saturation; Keller  et al., 2017), and empirical (Samperton  et al., 2015) results seen in Figure 1a provides a relative zircon
crystallisation density function fxtal(tr), where tr is relative time, scaled from zircon saturation (tsat) to eruptive truncation (terupt), that
is:

t r = (t−t erupt )/∆t       (1)

where

∆t = t sat−t erupt     (2)

When thus scaled, the form of this zircon density function remains consistent across a wide range of rock types, as seen in Fig. S-1.
More  generally,  for  any system where  we can independently  determine  fxtal(tr),  we may then  define  a  mineral  crystallisation
distribution Dxtal(tsat, terupt) with a normalised probability density function pxtal(t | tsat, terupt) given by:

P xtal (t | t sat , t erupt ) = {
0 t<teruption
0 t>t saturation

f xtal (t r )/∆t t erupt≤t≤t sat
}             (3)

We then approach the estimation of  terupt as a Bayesian parameter estimation problem. Central to this approach is the ability to
calculate the likelihood that an observed zircon age was drawn from a given crystallisation distribution, accounting for analytical
uncertainty. For a single zircon  i of age  xi and Gaussian analytical uncertainty with variance σ2, this likelihood  L is given by an
integral over all time:

L (xi|t sat ,terupt ) = ∫
−∞

∞
1

√2 πσ 2
exp(

−(x i−t )
2

2σ2 )∗p xtal (t|t sat ,terupt )dt         (4)

This convolution integral is calculated numerically given a scaled and normalised vector for fxtal(tr) which discretises fxtal(tr) between
tsat and terupt. We then calculate the log likelihood of a given proposal for a dataset of Nz zircons as:
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LL (t erupt ,t sat ) = ∑
i=1

N z

log (L (x i|t sat ,terupt ) )                   (5)

Given this  log likelihood,  terupt may  now be estimated  by Markov Chain  Monte  Carlo  methods.  We implement  the  standard
Metropolis algorithm (Metropolis et al., 1953) with a symmetric Gaussian proposal distribution for both terupt and tsat, as follows:

1. Begin with initial proposals terupt = min(tobs) and tsat = max(tobs) where tobs is the array of observed mineral ages

2. Draw one value from a continuous uniform distribution u  ∼ unif(0, 1)

3. Adjust either terupt or tsat with a symmetric Gaussian proposal

t erupt prop = {
t erupt+X u≤0.5

t erupt u>0.5 }                      (6)

t sat prop = {
t sat+X x≤0 .5

t sat u>0.5 }                   (7)

where the random variable X  ∼ �(0, σ2
prop).

4. If t erupt prop>t satprop  then  reverse the two proposals

5. Calculate the log likelihood of the new proposal

LLprop=LL (t sat prop ,terupt prop)              (8)

1. Accept the proposal with probability Paccept = min(exp(LLprop - LLlast), 1), where LLlast is the log likelihood of the last accepted
proposal.  In the present implementation,  any number representable as a 64-bit  floating point number is  permitted as
potential value for tsat and terupt, providing an exceptionally weak prior which reduces to a constant and thus is eliminated
from the acceptance probability function. This prior might reasonably be tightened to  e.g.,  unif(0, 4.567 Ga), though the
more valuable prior information is contained in pxtal.

2. Repeat steps 2-6 at least 104 times, recording a running list of all accepted proposals.

In this way our Markov chain explores a likelihood space such as that shown in Fig. S-2. If initial proposals for tsat and terupt are far
from the true value, we may observe an initial period of optimisation known as burn-in, characterised by systematic variation in tsat

and terupt accompanied by increasing log likelihood. However, initial proposals given by the oldest observed zircon age for tsat and
the youngest observed zircon age for terupt are sufficiently accurate that burn-in is often observed to be negligible (Fig. S-3). After
burn-in, our posterior distributions for tsat and terupt are given by the stationary distribution of accepted proposals; for instance, our
estimates for the mean and standard deviation of tsat are given by the mean and standard deviation of the stationary distribution of
accepted proposals of tsat.

Testing and validation
In order to evaluate the efficacy of the above Bayesian parameter estimation method (with various crystallisation distributions)
relative to traditional weighted mean, youngest zircon, and low-N weighted mean interpretations, we conducted a range of tests
with synthetic datasets drawn from the single-batch crystallisation distribution. In particular, we explored synthetic datasets of
between 1 and 1024 zircons with ∆t/σ from 0.01 to 10. Each synthetic dataset tsyn was drawn from the MELTS-derived crystallisation
distribution scaled over a crystallisation timescale ∆t between tsat syn and terupt syn, prior to the addition of analytical uncertainty σ as a
Gaussian random variable.

tsyn = txtal + terror                (9) 
where each element i of txtal and terror is distributed as

t xtali ~Dxtal (t sat syn ,terupt syn )
t errori ~� (0 ,σ2 )

for each of the N synthetic analyses in tsyn.

Using  a  pseudorandom  number  generators  to  draw  independent  and  identically  distributed  samples  from  �(0,σ2)  and
Dxtal(tsat syn,  terupt  syn), we are able to generate independent synthetic datasets at every N and ∆t/σ of interest. While computationally
intensive,  the  problem  of  repeatedly  testing  the  weighted-mean,  youngest-zircon  and  Bayesian  age  interpretations  with
independent synthetic datasets is inherently highly parallel. Consequently, we are able to use a simple and scalable code written in
C and parallelized  with  MPI to  test  each interpretation  (weighted-mean,  Bayesian,  etc.)  estimation  on 1200 independent  and
identically distributed synthetic datasets for every combination of

 ∆t /σ∈0 .01,1,2,10
with 

N∈1,2,3,4,6,8,11,16,23,32,45,64,91,128,181,256,362,512,724,1024
using 320 cores of a Linux cluster at the Princeton Institute for Computational Science and Engineering.
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In initial tests, we observed a tendency of the Markov chain to diverge at low Nz. This is perhaps not surprising in the absence of
any other imposed prior constraints: to give a concrete example, a single detrital zircon age provides virtually no constraint on the
depositional age of a given stratum; the two may differ by hundreds of Myr. The same is not generally true, however, for volcanic
zircons in an ash bed.  To avoid this  problem,  we introduce a more informative  Bayesian prior  on ( tsat,  terupt)  to  slightly  favor
proposals close to the weighted mean for underdispersed low-N datasets and proposals close to the youngest and oldest observed
zircon for overdispersed low-N datasets, adjusting equation (8) as follows:

LLprop= LL (t sat prop ,terupt prop ) +
Z r∗Awmean + (1−Zr )∗Aobs
log (1+N z )

                             (10)

 given

Awmean=2∗log(
|tmin prop−μw| + σw

σw
∗

|tmaxprop−μw| + σw
σw ) (11)

Awmean=2∗log(
|tmin prop−t yz| + σ yz

σ yz
∗

|tmaxprop−toz| + σ oz
σoz ) (12)

where μw and σw are the value and uncertainty of the weighted mean of the observed(or synthetic) dataset,  tyz and σyz are the age
and analytical uncertainty of the youngest observed (or synthetic) zircon, toz and σoz are the age and analytical uncertainty of the
oldest observed (or synthetic) zircon, and Zr, after Wendt and Carl (1991):

Zr=exp ( (N /2−1 ) ∗ log (MSWD ) − N z /2∗(MSWD−1 ) )   (13)

which ranges from 0 to 1, is the relative likelihood of the MSWD of the observed dataset occurring by chance (relative to MSWD =
1) for dataset of Nz observations.

Results of these synthetic dataset tests are shown in Figure 2 and tabulated in the .log files in the synthetic dataset test directory.
The performance of each interpretational approach is quantified in terms of (1) the mean absolute deviation of the model result
from the true answer, in units of analytical uncertainty σ Ma and (2) the mean absolute error of a given interpretation divided by
the mean absolute error expected based the reported uncertainty of that interpretation. These units are further explained visually in
Fig. S-8.

As with  all  other  computational  source  code,  the  resulting  program is  freely  available  at  https://github.com/brenhinkeller/
BayeZirChron.c, along with ASCII files containing the vector  f(tr)  used to draw from  Dxtal(tsat  syn,  tsat  syn) and plotted in Figure 1
(VolcanicZirconDistribution.tsv) and all other distributions used in the Bayesian eruption age estimation approach.

Empirical crystallisation distributions
Notably,  the MELTS zircon crystallisation distribution is  fully accurate only for  a single  magma batch undergoing monotonic
cooling with roughly constant cooling rate; this is not the general case. For highly-dispersed datasets where we cannot assume such
magma conditions,  we have tested a hierarchical approach in which the form of the relative crystallisation distribution  f(tr) is
estimated from the data, leading to what may be considered a type of Empirical Bayes approach: first estimate  fxtal(tr), then (as
usual) use that fxtal(tr) to construct pxtal(t | tsat, terupt) and estimate the distribution of tsat and terupt. In other words, each element of the
array  fxtal(tr) is analagous to a hyperparameter which influences the distribution of the parameters tsat and terupt.

Such  an  approach,  if  incautiously  applied,  may  carry  with  it  a  significant  risk  of  error.  Consequently,  it  is  critical  that  the
performance  of  our  implementation  of  this  hierarchical  approach is  thoroughly  evaluated,  particularly  in  comparison  to  less
informative alternatives such as assuming a uniform crystallisation distribution.  In order to subject this  approach to the same
synthetic dataset tests used for the other five interpretation approaches, we have reimplemented our parallel synthetic dataset
generation and Bayesian eruption age estimation codes in Julia, which allows for scalable parallel calculations in a higher-level
programming environment.

In this approach, our key point of prior knowledge is that eruption should cause an abrupt cutoff in the crystallisation distribution.
Consequently,  our implementation must reliably produce an estimate of  fxtal(tr) that reproduces any broad fluctuations in xtal r
relative crystallisation rate while maintaining an abrupt cutoff at  tr = 0. We accomplish this through a truncated kernel density
estimate of the scaled crystallisation times tr obs where

t robs=
tobs − min (tobs )

max (tobs) − min (tobs )
              (14) 

To produce a kernel density estimate of fxtal(tr) from tr obs, we use the KernelDensity.jl package with a Gaussian kernel and bandwidth
determined by Silverman’s  rule.  The resulting kernel  density  estimate  is  truncated at  tr = −0.05.  If  fewer than 5 analyses  are
available for a given sample, we default to the  N = 1 case, which yields a truncated Normal distribution due to the choice of a
Gaussian kernel.
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As shown in TestBootstrappedAccuracyParallel.jl, we again draw synthetic datasets from the MELTS volcanic zircon distribution,
for the same range of N and ∆t/σ as above, in parallel on 320 cores of a Linux cluster. For each independent synthetic dataset, fxtal(tr)
is  then  estimated  by  KDE  as  described  above,  and  the  Bayesian  eruption  age  code  run  using  this  relative  crystallisation
distribution. The results, included in Figure 2, allow us to compare the accuracy of this “bootstrapped” estimate of terupt both (1) in
absolute terms, (2) relative to traditional zircon age interpretations, and (3) relative to equivalent Bayesian estimates using either (a)
the MELTS prior from which the synthetic data were actually drawn, or (b) assuming a uniform crystallisation distribution. As seen
in Figure 1, the “bootstrapped” crystallisation distribution does not fall to overfitting within the explored parameter space, and
significantly outperforms the assumption of a uniform crystallisation distribution at high ∆t/σ.
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Supplementary Figures

Figure S-1 Relative  zircon  crystallisation  distributions.  (a) Zircon  crystallisation  distributions  derived  from  MELTS  major  element  calculations,  trace  Zr
partitioning,  and the zircon saturation model  of  Boehnke  et  al.  (2013)  for  a  wide range  of  whole-rock compositions.  (b) Empirical  “bootstrapped”  zircon
crystallisation distributions, kernel density estimates of published datasets from Samperton et al. (2015), Barboni et al. (2015), and Wotzlaw et al. (2013). The
simple  in situ crystallisation distribution of  (a) seen in the Bergell case becomes increasingly distorted in the Elba and Fish Canyon datasets,  which may be
attributed to a combination of (1) potentially complicated thermal histories, (2) truncation of the long tail of plutonic crystallisation by eruption (Fish Canyon) or
hypabyssal porphyry intrusion (Elba), or (3) a lack of sub-grain microsampling, which has been conducted at scale only in the Bergell dataset.

Figure S-2 Likelihood space for dataset with 100 zircons and ∆t = 10σ. Warmer colors denote greater likelihood, with the highest likelihood observed near the
true answer (denoted by black +).
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Figure S-3 Saturation and eruption ages of the first 105 steps of of the Markov chain for an MCMC inversion of a synthetic dataset with 100 zircons and ∆t =
10σ. Due to the simple monotonic nature of the likelihood function for such an age inversion, and the availability of accurate initial guesses (i.e., the oldest and
youngest zircon), the distribution is immediately stationary. A weighted mean age must always plot on the line of instantaneous crystallisation.

Figure S-4 The uncertainty  of the MSWD for analytical  datasets  as a  function of  N for a  range of  ∆t/σ. The case of  ∆t = 5σ is  not distinguishable  from
instantaneous crystallisation with N less than 50, and ∆t = 2σ is not distinguishable with N less than 700.∼ ∼
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Figure S-5 Bayesian eruption age estimates for alternate Bishop Tuff and Fish Canyon Tuff datasets: (a) arbitrarily excluding all zircon ages older than 28.3 Ma in
the Fish Canyon dataset, and (b) including two xenocrysts (one off-scale) in the Bishop Tuff dataset. Compared to a uniform distribution, empirical estimates and
MELTS calculations provide more informative relative crystallisation distributions – yielding more accurate results in an ideal system, but with increased risk of
overfitting. If all zircons were strictly autocrystic, the presence of outliers would suggest that we are incompletely sampling the zircon saturation distribution, and
thus overestimating the eruption age. Including xenocrystic outliers in the Bayesian age interpretation thus leads to underestimation of the eruption age and
divergence between Bayesian and weighted mean ages for the Bishop Tuff. Consequently, methods for quantitatively identifying xenocrystic grains unrelated to
in situ crystallisation of the erupted magma are of particular utility.
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Figure S-6 A comparison of the absolute error of each age interpretation for synthetic data drawn from different relative crystallisation distributions  f(tr).  
(a-d) MELTS crystallisation distribution as in Figure 2.  (e-h) Uniform crystallisation distribution.  (i-l) Truncated Normal crystallisation distribution. Assuming a
uniform crystallisation distribution provides the most consistently accurate results at low ∆t/σ, while the “bootstrapped” distribution interpretation (base on a
truncated kernel density estimate for each synthetic dataset) consistently performs well at high ∆t/σ. As in Figure 2, mean absolute error is the mean absolute
deviation of the model result from the true value, reported in units of analytical uncertainty, σ; lower absolute errors are better. Each datum reflects the mean of
1200 synthetic dataset tests; standard error of the mean is on the order of the line width.
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Figure S-7 A comparison of the relative error of each age interpretation for synthetic data drawn from different relative crystallisation distributions  f(tr).  
(a-d) MELTS crystallisation distribution as in Figure 2.  (e-h) Uniform crystallisation distribution.  (i-l) Truncated Normal crystallisation distribution. Assuming a
uniform crystallisation distribution provides the most consistently accurate results at low ∆t/σ, while the “bootstrapped” distribution interpretation (based on a
truncated kernel density estimate for each synthetic dataset) consistently performs well at high ∆t/σ. As in Figure 2, “error / expected error” quantifies the
accuracy  of  the  model  uncertainty  for  each  age  interpretation.  A  value  greater  than  one  indicates  an  underestimation  of  the  model  uncertainty  ( i.e.
overprecision), while a value lower than one indicates an overestimation of the model uncertainty. Each datum reflects the mean of 1200 synthetic dataset tests;
standard error of the mean is on the order of the line width.
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Figure S-8 Explanation of some of the terms used in Fig. 2. Panel (a) Illustrates the calculation of absolute error (c.f. Fig. 2a-d) for an example dataset with ∆t =
4σ and average analytical error σ = 0.5 Ma. For a weighted mean age of 101.1 Ma and a true eruption age of 100.0 Ma, we find an absolute error of 1.1 Ma, equal
to 2.2 σ. For the same example dataset, the ratio of absolute error to expected error (c.f. Fig. 2e-h) is calculated in  (b): absolute error is unchanged, while
expected error is equal to the mean absolute deviation (MAD) of the resulting weighted mean. Mean absolute deviation is further explained in (c) and (d). The
familiar probability density function (PDF) of a standard normal random variable X with mean of 0 and variance 1 is illustrated in panel (c). The distribution is
symmetric about the mean. The PDF of a corresponding half- normal random variable Y = |X| is shown in (d); the mean of Y is the mean absolute deviation of X.
In general, the mean absolute deviation of any Gaussian random variable is equal to 0.798 times the standard deviation.
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