Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc

B. Debret1*, C.D.J. Reekie2, N. Mattielli3, H. Beunon3, B. Ménez1, I.P. Savov4, H.M. Williams2

Abstract

Subduction zones are active sites of chemical exchange between the Earth’s surface and deep interior and play a fundamental role in regulating planet habitability. However, the mechanisms by which redox sensitive elements (e.g., iron, carbon and sulfur) are cycled during subduction remains unclear. Here we use Fe stable isotopes (δ^{56}Fe), which are sensitive to redox-related processes, to examine forearc serpentinite clasts recovered from deep sea drilling of mud volcanoes formed above the Mariana subduction zone in the Western Pacific. We show that serpentinisation of the forearc by slab-derived fluids produces dramatic δ^{56}Fe variation. Unexpected negative correlations between serpentine bulk δ^{56}Fe, fluid-mobile element concentrations (e.g., B, As) and Fe/ΣFe suggest a concomitant oxidation of the mantle wedge through the transfer of isotopically light iron by slab-derived fluids. This process must reflect the transfer of either sulfate- or carbonate-bearing fluids that preferentially complex isotopically light Fe.

Introduction

Subduction zones regulate chemical exchange between the Earth’s surface and interior, modulating the long term cycling of redox sensitive elements such as iron, carbon and sulfur (Evans, 2012). Recent iron isotope studies (δ^{56}Fe) have shown that iron, which was previously considered to be insoluble, can be mobilised in slab-derived fluids by complexation with chloride and/or oxidising ligands (e.g., Fe(II)-CO$_3$ or Fe(II)-SO$_4$; Debret et al., 2016, 2018). Importantly, these complexes preferentially concentrate light (low) δ^{56}Fe, driving stable isotope fractionation (Debret et al., 2016, 2018). These findings concur with the high Fe$^{3+}$/Fe$^{2+}$ (Kelley and Cottrell, 2009) and light δ^{56}Fe (Nebel et al., 2015) of arc lavas relative to mid-ocean ridge basalts, although the origin of light δ^{56}Fe in arc lavas remains an active research frontier. Iron stable isotopes are therefore a potentially powerful tool to track the mobility of iron and the fate of oxidised fluids across subduction zones. However, questions remain as to whether iron is sufficiently concentrated in slab-derived fluids to influence the δ^{56}Fe of the sub-arc mantle and if so, do links between the oxidation state and the δ^{56}Fe of mantle wedge peridotites exist?

The transfer of redox sensitive elements across subduction zones involves complex and multi-stage processes (Nebel et al., 2015). For example, both the oxidation state and isotope signature of mantle wedge peridotites are likely to be influenced by existing heterogeneities prior to subduction (Williams et al., 2004), as well as by later metasomatism by slab-derived fluids and/or melts (Huang et al., 2019) and/or retrograde processes linked to rock exhumation (Li et al., 2016). Despite this, Turner et al. (2018) recently showed that the unusually light δ^{56}Fe values (down to -0.31‰ of some sub-arc mantle xenoliths were too fractionated to have been caused solely by partial melting. They observed correlations between δ^{56}Fe with 206Pb/204Pb and U/Th, tracers of fluid-related processes, and suggested that sample δ^{56}Fe was modified by reaction with low δ^{56}Fe slab fluids. Similar conclusions were reached by Debret et al. (2018) who analysed metamorphic gem olivines in veins from the sub-arc mantle of the Kohistan-Ladakh arc. The vein-forming minerals are interpreted to have crystallised from fluids that migrated through the forearc mantle, and they display light δ^{56}Fe (-0.06 to -0.36‰) relative to typical mantle olivine (~ -0.01‰; Sossi et al., 2015). These results suggest a strong coupling between slab-derived fluids and the δ^{56}Fe composition of the mantle wedge.

To test this idea we carried out a δ^{56}Fe study of serpentinite clasts from the Mariana forearc. The Mariana forearc is the only place in the world where actively metasomatised forearc can be sampled (Savov et al., 2007; Fryer et al., 2018). It belongs to a non-accretionary subduction system, spreading from near Tokyo (Japan) to beyond Guam (U.S.A.) and involves the subduction of the Mesozoic Pacific plate below the Philippine
Sea plate (Fig. 1). Here, fluids released from the subducting slab bring metasomatised forearc rocks to the surface and erupt as mud volcanoes. These rocks provide a direct window into δ56Fe and redox exchanges between the subducted slab and the forearc mantle at various depths. Our study focuses on serpentinised forearc peridotite clasts recovered during the International Oceanic Discovery Program (IODP) Expedition 366 by drilling three mud volcanoes: Yinazao, Fantangisña and Asùt Tesoru, located at increasing distance from the trench (Table S-1, Fig. 1).

Sample Selection

The studied clasts have been petrographically and geochemically characterised by Debret et al. (2019) and Fryer et al. (2018). They provide a record of deep forearc mantle serpentinisation by slab-derived fluids. Lizardite-bearing serpentinites (Liz-serpentinites) display variable degrees of serpentinisation (from 30 to 100 %) and are primarily composed of low temperature brown serpentine (i.e. lizardite and/or chrysotile) and Fe-rich brucite assemblages forming mesh and bastite textures after olivine and orthopyroxene, respectively. These samples represent the first stage of forearc mantle wedge hydration at low temperature (180-230 °C, based on oxygen isotope estimates) and shallow depths (<13 km; Debret et al., 2019). Antigorite-bearing serpentinites (Atg/Liz- and Atg-serpentinites) are highly serpentinised (~100 %) and show progressive replacement of lizardite-bearing textures (i.e. mesh and bastite) by antigorite, magnetite and Fe-poor brucite. Oxygen isotope measurements show that the recrystallisation of lizardite to antigorite occurs at temperatures ranging from 200-250 °C to 320-410 °C (Debret et al., 2019), consistent with thermodynamic predictions (Evans, 2004) and antigorite crystallisation temperature estimates derived from meta-ophiolite serpentinites (Schwartz et al., 2013). This provides evidence for the formation of these samples during the progressive burial and hydration of the forearc mantle at depths ranging from 13 to 18 km. The recrystallisation of lizardite to antigorite is accompanied by a decrease in Cs, Li and Sr, and an increase in As and Sb concentrations in the bulk clasts, whereas B concentrations are relatively constant (Debret et al., 2019). The forearc wedge also experienced late stage serpentinisation at low temperature (<180 °C) during clast exhumation which is characterised by the crystallisation of “blue” serpentine and sulphides (blue-serpentinite; Debret et al., 2019). Where present, this late serpentinisation stage largely replaces former textures, i.e. serpentine or mantle minerals, and results in a flattening of rare earth element (REE) spectra and an increase in bulk serpentinite Zn concentration. In order to constrain the impact of such late retrogression stages on the Fe redox state and isotope composition of forearc peridotites,
we analysed a suite of these blue-serpentinites. Finally, we tested the chemical and Fe-isotope variability of serpentanised clasts along the Mariana forearc by analysing a suite of ultramafic clasts recovered from South Chamorro, one of the most distant mud volcanoes from the trench located at the extreme south of the Mariana subduction, during the Ocean Drilling Program (ODP) Leg 195 (Fig. 1).

Results

The δ^{56}Fe and FeO methods and data (samples and standards) are provided in the Supplementary Information. The Mariana ultramafic clasts display large variations in Fe^{3+}/ΣFe (0.24 – 0.67) and δ^{56}Fe (-0.26 ± 0.06; 2s.d., to +0.09 ± 0.02 ‰; Table S-2) with a light mean δ^{56}Fe of -0.06 ± 0.03 ‰ relative to that of the depleted mantle, as estimated from abyssal peridotites (+0.025 ± 0.025 ‰; Craddock et al., 2013). No systematic variations in Fe^{3+}/ΣFe and δ^{56}Fe values were observed with increasing distance to the trench or mud volcano location (Fig. 1). In contrast, there is a progressive increase in Fe^{3+}/ΣFe and decrease in δ^{56}Fe from Liz- serpentinites (Fe^{3+}/ΣFe = 0.24 – 0.37; δ^{56}Fe = -0.02 ± 0.12 ‰) to Atg/Liz- (Fe^{3+}/ΣFe = 0.33 – 0.59; δ^{56}Fe = -0.07 ± 0.09 ‰) and Atg- (Fe^{3+}/ΣFe = 0.51 – 0.67; δ^{56}Fe = -0.12 ± 0.07 ‰) serpentinites. These variations are broadly correlated with increasing bulk rock fluid-mobile element (FME) concentrations (Fig. 2). In contrast, blue-serpentinites display a large range of Fe^{3+}/ΣFe (0.33 – 0.77) with depleted mantle-like δ^{56}Fe (-0.01 ± 0.03 ‰) and correlations with FME concentrations are absent (Table S-2, Fig. S-1a-c).

Discussion

The low δ^{56}Fe signatures of antigorite-bearing clasts agree with our prediction that isotopically light Fe is mobilised in slab fluids (e.g., Debret et al., 2016, 2018). However, before assigning all Fe isotope variability to fluids, several processes must be considered: (1) pre-existing Fe isotope mantle heterogeneities prior to the forearc serpentanisation and (2) the mobility of Fe during late serpentinisation stages accompanying clay exhumation (e.g., blue-serpentine crystallisation). The influence of kinetic effects, related to the preferential mobility of isotopically light species during fluid/rock interactions or diffusive processes, can be ruled out as the direction of diffusive transport from solid (Fe-rich) to fluid (Fe-poor) would result in enrichment in isotopically heavy Fe in the solid, which would generate positive covariations between δ^{56}Fe and Fe^{3+}/ΣFe in the studied samples, which are not observed (Fig. 2c).

Forearc mantle wedge peridotites are former sub-arc peridotites that underwent extensive partial melting before being dragged into the forearc by mantle convection (Parkinson and Pearce, 1998). In serpentanised peridotites, protolith fertility is better assessed by Al_{2}O_{3}/SiO_{2} ratio rather than Al_{2}O_{3} contents (Niu, 2004). The Mariana ultramafic clasts display low Al_{2}O_{3}/SiO_{2} (<0.03) consistent with a refractory protolith, i.e. dunite or pyroxene-poor harzburgite. However, the studied samples also display a large range in δ^{56}Fe relative to dunite-like reference materials (Table S-2) and no systematic variation between δ^{56}Fe and Al_{2}O_{3}/SiO_{2} ratio are observed (Fig. S-2a). Similarly, previous studies have shown that high temperature metasomatic events (e.g., melt percolation) can lead to an enrichment in isotopically light Fe (Poiratsson et al., 2013). However, such processes also generate an increase in FeO and correlation between δ^{56}Fe and XMg (= Mg / [Mg + Fe]) are not observed in the studied samples (Fig. S-2b). This shows that the light δ^{56}Fe of Mariana clasts are not controlled by pre-existing protolith heterogeneities and must have been generated by the mobilisation of Fe in fluids.

Late serpentanisation stages that overprint high temperature paragenesis are associated with exhumation of clasts and are characterised by blue-serpentine crystallisation and changes in trace element chemistry (Debret et al., 2019). However, despite strong enrichments in Zn, blue-serpentinites display similar δ^{56}Fe (from -0.07 ‰ to +0.05 ‰) to depleted mantle, dunite reference materials and abyssal peridotites (Fig. S-3). Similarly, no correlation between δ^{56}Fe and indices of late processes, for example, seafloor carbonation (e.g., Sr/Yb) and/or blue-serpentine (e.g., Zn) crystallisation, are observed (Fig. S-3). This suggests that the Mariana forearc clasts preserved δ^{56}Fe values acquired prior to exhumation.
The light δ56Fe of our samples must therefore relate either to the loss or the addition of Fe during the serpentinisation of the forearc mantle at depth.

It is well established that forearc mantle serpentinisation by slab-derived fluids is accompanied with an increase in bulk rock FME concentrations (e.g., Savov et al., 2007). This enrichment has been attributed to the influx of slab-derived fluids in the forearc mantle at intermediate temperatures (200–600 °C). In Figure 2a,b, the prograde Mariana ultramafic clasts (Liz-, Atg/Liz- and Atg-serpentinites) form a step array that extends from mantle-like to low δ56Fe values (−0.26 ‰); this is accompanied with an increase in FME concentrations. In contrast, no correlation between δ56Fe and FME concentrations is observed in retrograde blue-serpentinites or abyssal serpentinites (Fig. S-1a,b). The light δ56Fe of the studied samples therefore must reflect the addition of isotopically light Fe by slab-derived fluids. Furthermore, this decrease in δ56Fe is associated with an increase in Fe3+/ΣFe (Fig. 2c), which is opposed to isotope theory predicting that isotopically heavy Fe will be concentrated into Fe3+−bearing phases rather than Fe2+−bearing phases (Polyakov and Mineev, 2000). This observation thus rules out the direct transfer of Fe3+ by slab-derived fluids. Instead, it suggests a concomitant transfer of isotopically light Fe3+−complexed with an oxidising component (e.g., sulfate or carbonate) in slab-derived fluids. Both sulfate or carbonate complexes have the potential to modify both the Fe isotope signature and oxidation state of forearc serpentinites, despite the relatively low solubility of Fe in fluids (Debret et al., 2018). Although chlorine complexes (e.g., Fe(II)Cl) also preferentially complex light Fe, they are inefficient oxidisers of Fe, and thus an unlikely means of generating the observed relationships between δ56Fe and Fe3+/ΣFe (Fig. 2c).

Differences in the stability fields of hydrous, carbon- and sulfur-bearing minerals mean that the compositions of fluid liberated from the subducting slab change progressively with depth. Because of the pronounced differences in δ56Fe between the Liz- and Atg-serpentinite clasts, it is important to identify the reactions responsible for the transfer of isotopically light and oxidised Fe to the mantle wedge. The serpentinisation of mantle peridotites through their interaction with water is commonly associated with the oxidation of ferrous Fe, leading to a progressive increase of Fe3+/ΣFe in the bulk rock and H2 production in the fluid phase through water reduction (Fig. 3):

$$3 \text{FeO} + \text{H}_2\text{O(aq)} = \text{Fe}_2\text{O}_3 + \text{H}_2\text{(aq)}$$

Eq. 1

This process is expected to be efficient at the relatively low temperature of forearc serpentinitisation (i.e. lower than 700 °C; Frost and Ballhaus, 1998). It can explain why the Mariana ultramafic clasts have high Fe3+/ΣFe ratios (0.24–0.67) relative to mantle peridotites (∼ 0.1; Canil et al., 1994). However, no obvious correlations between bulk rock water content and Fe redox state or between bulk rock water content and δ56Fe are observed (Fig. S-4). Light δ56Fe are mainly observed in antigorite-bearing samples while lizardite-bearing serpentinite displays depleted mantle-like values (Fig. 2). This suggests a marked change in the composition of slab-derived fluids with depth, where the composition of fluids derived at greater depths preferentially mobilise Fe relative to fluids released at shallower levels. Fluids released during the early (shallow) stage of slab devolatilisation (<13 km depth) are likely dominated by diagenetic processes and opal dehydration, whereas later (deeper) processes can include decarbonation and clay mineral decomposition reactions (Bebout, 2013 and references therein). Arsenic, Sb and light REE are preferentially enriched in fluids derived from sediment or metabasite decarbonation later (deeper) processes can include decarbonation and clay mineral decomposition reactions (Bebout, 2013). The correlation between As/Yb and δ56Fe in ultramafic clasts (Fig. 2b) may therefore indicate light δ56Fe is transferred to the mantle wedge by carbonate complexes. The transfer of redox sensitive elements, such as carbon, can modify the redox state of the forearc mantle according to the reaction (Fig. 3):

$$2\text{FeCO}_3\text{(aq)} + 6\text{FeO} = 4\text{Fe}_2\text{O}_3 + 2\text{C}$$

Eq. 2

The exact form of carbon in this equation is speculative. However, the increase of Fe3+/ΣFe in the ultramafic clasts is consistent with the observed increase of complex abiotic hydrocarbon phases in pore fluids from the most distal mud
volcanoes (Eickenbusch et al., 2019), suggesting that carbon may be the relevant oxidising agent in this setting. Furthermore, several studies have speculated the sulfate anions, derived from hydrous breakdown of sulfides, can complex with Fe and facilitate its transfer to the mantle wedge, for example:

\[
\text{FeSO}_4(aq) + 12\text{FeO} = 4\text{Fe}_3\text{O}_4 + \text{FeS}
\]

Reactions of this type are consistent with several studies which have shown that progressive prograde metamorphism of the subducting slab is associated with the release of sulfate- and/or carbonate-bearing fluids that mobilise light 56Fe (Debret et al., 2016, 2018). The percolation of such fluids into the forearc can drive Fe oxidation and therefore explain the negative correlation between 56Fe and Fe$_{3+}$/Fe$_{2+}$ (Fig. 2c), despite the absence of a correlation with bulk rock water contents (Fig. S-4).

The oxygen fugacity (fO$_2$) of slab-derived fluids is believed to increase with depth (e.g., Debret et al., 2016), with high fO$_2$ conditions (e.g., magnetite/hematite buffer) occurring at eclogite facies conditions (~80 km depth). Thus, during shallow forearc hydration (13-18 km depth), sulfur is expected to be oxidised to modest fO$_2$ in slab-derived fluids and mainly transferred under reduced form (e.g., H$_2$S), while carbon will be equilibrated as an oxidised form (CO$_2$). It is thus plausible to consider that carbonate could be the main ligand transferring isotopically light Fe from the slab to the shallow mantle wedge. This is consistent with the high carbon concentrations measured in Mariana pore fluids from the most distant mud volcanoes (Fryer et al., 2018). Together, the correlation between Fe isotopes, FME concentrations and ratios, and iron redox state demonstrate a critical role for slab-derived fluids in regulating the redox state of the mantle wedge.

Acknowledgements

This research used samples and data provided by the IODP and ODP. We are grateful to the crew of the D/V JOIDES Resolution and to the science party of IODP Expedition 366. Funding for this research was provided by a NERC Moratorium Award (NE/P020860/1, to BD and HMW), the ERC Consolidator Grant (306655, HMW), a NERC Critical Minerals grant (NE/M010848/1, HMW) and a Schlumberger Fellowship Award (IS). We thank K. Evans and F. Poitrasson for critical comments on earlier version of this article and careful editorial handling by M. Boyet. This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001.

Editor: Maël Boyet

Additional Information

Supplementary Information accompanies this letter at http://www.geochemicalperspectivesletters.org/article2003.

This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at http://www.geochemicalperspectivesletters.org/copyright-and-permissions.

References

