Ureilite meteorites provide a new model of early planetesimal formation and destruction

N. Rai1,2,3*, H. Downes2,3, C. Smith3

Abstract

Ureilite meteorites are ultramafic rocks derived from parts of the depleted silicate mantle of their parent planetesimal. We used Monte Carlo modelling to explain the observed array of oxygen isotopes and major element chemistry shown by bulk ureilites, after restoration of their missing core and silicate melt components. Despite using a wide range of primitive nebular material, our modelling shows that only a combination of proxy material resembling Allende-type FeO-rich and MgO-rich chondrules, can account for the ureilite oxygen isotope trend and the reconstructed ureilite major element chemistry. Our model predicts formation of a radial gradient in major elements and oxygen isotopes within the planetesimal, with a more Mg-rich silicate interior and a more Fe-rich silicate exterior. Temperatures recorded by ureilites were not high enough to form a magma ocean but were sufficiently high to form a metallic core and silicate melts. The ureilite parent planetesimal was then disrupted by impact. Re-accretion of the outer layers of more Fe-rich silicate material, at the expense of the more MgO-rich material and the core, explains the observed distribution of bulk rock and mineral compositions.

Introduction

Planetesimals represent an important stage in the formation of terrestrial planets (Elkins-Tanton, 2012). Ureilite meteorites are mostly fragments of the silicate mantle of a differentiated planetesimal (Scott et al., 1993; Mittlefehldt et al., 1998). They are a common group of achondrites and their existence must be explained in any comprehensive model of planetesimal formation. Here we present a model for accretion, differentiation and destruction of the ureilite planetesimal, which accounts for oxygen isotope compositions, major element compositions, and trace element abundances.

Ureilite meteorites provide a window into major planetesimal-forming processes. They are carbon-bearing, olivine-dominated meteorites (Mittlefehldt et al., 1998) which are mostly unbrecciated but also occur as polymict breccias (Goodrich et al., 2004). Almahata Sitta is a meteorite containing ureilite clasts and their existence must be explained in any comprehensive model of planetesimal formation. Here we present a model for accretion, differentiation and destruction of the ureilite planetesimal, which accounts for oxygen isotope compositions, major element compositions, and trace element abundances.

Ureilite meteorites are ultramafic rocks derived from parts of the depleted silicate mantle of their parent planetesimal. We used Monte Carlo modelling to explain the observed array of oxygen isotopes and major element chemistry shown by bulk ureilites, after restoration of their missing core and silicate melt components. Despite using a wide range of primitive nebular material, our modelling shows that only a combination of proxy material resembling Allende-type FeO-rich and MgO-rich chondrules, can account for the ureilite oxygen isotope trend and the reconstructed ureilite major element chemistry. Our model predicts formation of a radial gradient in major elements and oxygen isotopes within the planetesimal, with a more Mg-rich silicate interior and a more Fe-rich silicate exterior. Temperatures recorded by ureilites were not high enough to form a magma ocean but were sufficiently high to form a metallic core and silicate melts. The ureilite parent planetesimal was then disrupted by impact. Re-accretion of the outer layers of more Fe-rich silicate material, at the expense of the more MgO-rich material and the core, explains the observed distribution of bulk rock and mineral compositions.

Received 11 February 2019 | Accepted 6 May 2020 | Published 8 July 2020

1. Dept of Earth Sciences, Indian Institute of Technology, Roorkee 247667, India
2. Dept of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
3. Dept of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

* Corresponding author (email: n.rai@es.iitr.ac.in)
Barrat et al. (2017) also showed that ureilite carbon formed from mixing of two different reservoirs, one with high $\delta^{13}C$ and low MgO silicates, the other with low $\delta^{13}C$ and more MgO-rich silicates.

Figure 2 shows the distribution of ureilite olivine core compositions (Goodrich et al., 2004; Downes et al., 2008). Olivines with Fo$_{85}$ are much less abundant than those of Fo$_{85}$. Any model of the present day parent body must explain the preponderance of FeO-rich ureilites over MgO-rich ones. Another significant correlation in ureilites is between olivine Fo values and calculated equilibrium temperature (Singletary and Grove, 2006; Warren, 2012). MgO-rich ureilites reached higher temperatures (1320 °C) than FeO-rich ones (1190 °C). This correlation must be explained by any model of the original ureilite planetesimal.

Results

The anti-correlation between oxygen isotope compositions and the Fo content of constituent olivine in ureilites (Fig. 1b) indicates that a range of bulk ureilite compositions from MgO-rich to FeO-rich must be modelled. We have therefore
modelled accretion of the original ureilite planetesimal using a range of oxygen isotopes and bulk major element compositions. Ureilites provide an estimate of the bulk mantle composition of their parent planetesimal after removal of a core and various silicate melts. These compositional constraints are provided by the metal- and sulfide-free ureilite data of Warren (2012) (Table S-1, see Supplementary Information).

We used Monte Carlo simulations to calculate combinations of different chondritic components (Table S-1), together with FeO-rich and MgO-rich chondrules. The chondrules used for modelling are a proxy for the real primitive materials that formed the original parent body, which was probably formed from an earlier generation of chondrules rarely seen in meteorites (Libourel and Krot, 2007). We ran 100,000 Monte Carlo simulations to assess two, three and four end member combinations of all components that could simultaneously satisfy the oxygen isotope characteristics (Δ^{17}O, δ^{18}O and δ^{17}O). For each simulation, we allowed the proportions of components to vary randomly (maintaining a total of 100 %) and determined whether the resulting oxygen isotope characteristics matched those of ureilites. We found that no model consisting entirely of bulk chondrites and/or CAIs could satisfy the oxygen isotope criteria. We did not find any valid three or four end member solutions that could exactly reproduce the entire trend of ureilite oxygen isotopes without over-generating or under-generating the range of observed ureilite oxygen isotopes. The only possible solution is a binary mixture consisting of FeO-rich and MgO-rich chondrules that can reproduce the entire trend of ureilite oxygen isotopes. The ureilite compositional range is bracketed by two end member mixtures: (i) 92 wt. % FeO-rich chondrules with 8 wt. % MgO-rich chondrules and (ii) 33 wt. % FeO-rich chondrules with 67 wt. % MgO-rich chondrules.

We then evaluated the range of bulk ureilite major element compositions predicted by this combination. Figure 3 shows that the range of metal-free ureilite compositions has Fe/Si and Al/Si ratios which are too low to be accounted for by any combination of chondrules, and Mg/Si ratios which are higher than all bulk chondritic material. This clearly indicates that a missing silicate melt needs to be added back to restore the original bulk composition of the ureilite planetesimal. Our models used several silicate melt compositions (Table S-1). We found that, for Mg/Si, Al/Si and Ca/Al ratios, the reconstructed bulk ureilite compositions can be matched by the addition of 5 % basalt to 95 % depleted ureilite mantle, regardless of Mg# of the mantle.

However, the Fe/Si and Fe/Al ratios of the model bulk compositions could not be matched, because we did not account for segregation of an Fe-rich core. Adding a core of 1-6 % FeS elevated the Fe/Si and Fe/Al ratios and matched the model values. Thus, our two end member chondrule model predicts a FeS core consistent with observed siderophile element systematics of ureilites (Rankenburg et al., 2008; Hayden et al., 2011; Warren, 2012). It also predicts that a “ureilite chondrite” existed which was composed of mostly high FeO chondrules with a minor amount of MgO-rich chondrules, analogous to the “lodranite chondrite” reported by Li et al. (2018).

Discussion

Any model of the evolution of the ureilite planetesimal must account for the range of bulk compositions and the strong correlations in oxygen isotopes in ureilite meteorites (Figs. 1, 3), the differences in temperature shown by MgO-rich and FeO-rich ureilites, and the observed distribution of olivine core Fo contents (Fig. 2). We propose a series of stages, leading to the formation of the currently sampled daughter asteroid (Fig. 4). Our model draws together some aspects of previous models of ureilites (Herrin et al., 2010; Warren, 2012; Horstmann and Bischoff, 2014; Goodrich et al., 2015; Sanders et al., 2017) but differs in the building blocks and the consequent radial compositional gradients within the original planetesimal. Our model also implies that the ureilite planetesimal accreted in a region of the solar nebula where primitive materials resembling MgO-rich and FeO-rich chondrules were abundant. Basalt dissipative magmatism which was common on all

Figure 2 Histogram of olivine core compositions in monomict ureilites and ureilitic fragments in polymict ureilites (Goodrich et al., 2004; Downes et al., 2008).
C-rich asteroids that were roughly 150 ± 50 km in diameter (Warren and Kallemeyn, 1992), is an integral feature of our model, and supports an original ureilite parent body that was at least 150 ± 50 km in size.

The first stage (Fig. 4a) was accretion of a mixture of MgO-rich chondrules with low Δ^{17}O values, and FeO-rich chondrules with higher Δ^{17}O values, the chondrules being used as proxy for the real primitive material that formed the original ureilite planetesimal. This mixture accounts both for the oxygen isotope variation (Fig. 1a) and the co-variation of composition with oxygen isotopes (Fig. 1b). The model is supported by observations of FeO- and MgO-rich chondrules in single meteorites (Ruzicka, 2012). In our model, the first accreted material would have had a more MgO-rich composition, with later material being more FeO-rich, thereby producing a compositional gradient in the original ureilite planetesimal. Our model agrees with the two component model of Barrat et al. (2017) based on carbon isotopes, and predicts that the high MgO chondrules would have low δ^{13}C values, whereas the high FeO chondrules would have higher δ^{13}C values. Although it does not preclude the possibility that ureilites could be derived from two or more parent bodies, our model clearly demonstrates that a compositionally zoned, single parent body (Downes et al., 2008; Goodrich et al., 2013) can successfully explain the observed geochemical and oxygen isotope signatures of ureilites.

Goodrich et al. (2001) showed that 26Al was present in ureilites, although in amounts insufficient to cause complete melting (Budde et al., 2015). This fits well with the ages of chondrule formation, as Kurahashi et al. (2008) showed that MgO-rich chondrules have ages of 1.7 to 2.5 Myr after CAIs, whereas FeO-rich chondrules have slightly younger ages (1.9 to 2.6 Myr after CAIs). Heating from 26Al would have caused a rapid increase in temperature throughout the planetesimal leading to formation of an Fe sulfide melt (Fig. 4b) which coalesced to form a core. This removed siderophile and chalcophile elements, causing the depletion seen in remaining ureilite metals and bulk rocks (Rankenburg et al., 2008; Goodrich et al., 2013), and would also lead to a heavy Fe isotope composition of the silicate portion, consistent with investigations of ureilites, iron meteorites and experimental observations (Williams et al., 2006; Schuessler et al., 2007; Budde et al., 2015).

Heating continued until silicate partial melting began. Temperatures varied from 1320 °C in the high MgO inner part of the planetesimal to 1190 °C in the low MgO outer part (Warren, 2012). Silicate melts, including trachyandesites and basalts, were formed by fractional melting in all silicate portions of the planetesimal (Fig. 4c). This accounts for REE-depletion in the residual ureilites (Guan and Crozaz, 2001). These silicate melts are found as melt inclusions and melt clasts (Goodrich et al., 2001; Cohen et al., 2004). Some melts may have intruded into the ureilite mantle and contributed to formation of pyroxene-rich ureilites (Downes et al., 2008). Formation and rapid removal of silicate melts formed from low degrees of partial melting would not have homogenised the major element radial compositional gradients within the planetesimal interior.

Silicate melting removed 26Al from the planetesimal interior, so cooling began. However, while the planetesimal was still hot, it was disrupted by a major impact (Fig. 4d; Warren and Kallemeyn, 1989; Herrin et al., 2010). During this event, hot olivines and pyroxenes reacted with carbon and
formed the characteristic reverse zoned olivines decorated with metallic iron blebs. To account for the distribution of olivine compositions (Fig. 3), disruption must have been caused by a glancing blow, such that the outer Fe-rich portions were preferentially disrupted (Fig. 4d,e). The S-rich core remained intact, together with the remaining MgO-rich inner silicate portion of the planetesimal. A daughter asteroid (the present day ureilite parent body) then re-accreted from the jumbled and chaotic silicate fragments (Fig. 4f; Herrin et al., 2010; Goodrich et al., 2015), from which present day ureilites are derived.

Conclusions

Many early Solar System processes are exemplified by ureilite meteorites. We have used constraints from the geochemical trends displayed by ureilites (Fig. 1), and their reconstructed bulk major element compositional range (Fig. 3), to produce a two component model consisting of MgO-rich and FeO-rich chondrules, that have been used in our compositional model as proxy for the real primitive material that formed the original ureilite planetesimal. This successfully explains the correlation between oxygen isotopes and Fo contents of olivine cores in ureilites. The model also explains the trace element systematics of the siderophile and rare earth elements, by formation of an FeS core and silicate melts, respectively.

Acknowledgements

We gratefully acknowledge the Leverhulme Trust for financial support (RPG2012-711), and the Natural History Museum for support. Noriko Kita, Sara Russell, Ian Sanders, Ed Scott and Cyrena Goodrich provided useful feedback. The manuscript improved from the constructive reviews and thoughtful suggestions by two anonymous reviewers and the editor.

Editor: Helen Williams

Additional Information

Supplementary Information accompanies this letter at http://www.geochemicalperspectivesletters.org/article2018.

References

Ureilite meteorites provide a new model of planetesimal formation and destruction

N. Rai, H. Downes, C. Smith

Supplementary Information

The Supplementary Information includes:

- Table S-1
- Supplementary Information References
Table 5-1 Major element chemistry, elemental ratios and oxygen isotope ratios used as chondritic end-members considered in the Monte-Carlo models. Values for MgO-rich and FeO-rich ureilites (depleted mantle end-members), predicted FeO-rich and MgO-rich ureilite parent body compositions for the 2-end-member model, Venera 13 basalt, predicted ureilite basalt composition and ureilite trachyandesite also given.

<table>
<thead>
<tr>
<th></th>
<th>Mg (wt.%)</th>
<th>Al (wt.%)</th>
<th>Si (wt.%)</th>
<th>Fe (wt.%)</th>
<th>Ca (wt.%)</th>
<th>Mg/Fe</th>
<th>Al/Fe</th>
<th>Ca/Al</th>
<th>Fe/Si</th>
<th>Fe/Al</th>
<th>Δ17O</th>
<th>δ18O</th>
<th>δ17O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH2,3</td>
<td>10.50</td>
<td>0.97</td>
<td>11.37</td>
<td>45.09</td>
<td>1.37</td>
<td>0.92</td>
<td>0.09</td>
<td>1.01</td>
<td>1.41</td>
<td>3.97</td>
<td>-1.45</td>
<td>-0.60</td>
<td>1.64</td>
</tr>
<tr>
<td>CI2,3</td>
<td>10.32</td>
<td>0.97</td>
<td>11.43</td>
<td>20.32</td>
<td>0.97</td>
<td>0.90</td>
<td>0.08</td>
<td>1.00</td>
<td>1.78</td>
<td>20.95</td>
<td>0.41</td>
<td>8.87</td>
<td>16.26</td>
</tr>
<tr>
<td>CK2,3</td>
<td>15.05</td>
<td>1.45</td>
<td>15.37</td>
<td>25.24</td>
<td>1.50</td>
<td>0.98</td>
<td>0.09</td>
<td>1.03</td>
<td>1.64</td>
<td>17.41</td>
<td>-4.16</td>
<td>-4.34</td>
<td>-0.35</td>
</tr>
<tr>
<td>CM2,3</td>
<td>12.21</td>
<td>1.17</td>
<td>13.79</td>
<td>22.04</td>
<td>1.25</td>
<td>0.89</td>
<td>0.08</td>
<td>1.07</td>
<td>1.60</td>
<td>18.84</td>
<td>-2.60</td>
<td>1.29</td>
<td>7.49</td>
</tr>
<tr>
<td>CO2,3</td>
<td>14.46</td>
<td>1.63</td>
<td>16.21</td>
<td>24.91</td>
<td>1.32</td>
<td>0.89</td>
<td>0.10</td>
<td>0.81</td>
<td>1.54</td>
<td>15.28</td>
<td>-4.28</td>
<td>-4.92</td>
<td>-1.23</td>
</tr>
<tr>
<td>CR2,3</td>
<td>14.05</td>
<td>1.23</td>
<td>15.51</td>
<td>24.46</td>
<td>1.27</td>
<td>0.91</td>
<td>0.08</td>
<td>1.03</td>
<td>1.58</td>
<td>19.89</td>
<td>-1.58</td>
<td>0.10</td>
<td>3.24</td>
</tr>
<tr>
<td>CV2,3</td>
<td>14.86</td>
<td>1.71</td>
<td>15.93</td>
<td>23.64</td>
<td>1.87</td>
<td>0.93</td>
<td>0.11</td>
<td>0.99</td>
<td>1.48</td>
<td>13.82</td>
<td>-4.01</td>
<td>-3.60</td>
<td>0.78</td>
</tr>
<tr>
<td>EH2,3</td>
<td>11.32</td>
<td>0.97</td>
<td>17.08</td>
<td>31.31</td>
<td>0.90</td>
<td>0.66</td>
<td>0.06</td>
<td>0.93</td>
<td>1.83</td>
<td>32.28</td>
<td>0.01</td>
<td>2.76</td>
<td>5.29</td>
</tr>
<tr>
<td>EL2,3</td>
<td>13.64</td>
<td>1.14</td>
<td>19.57</td>
<td>25.88</td>
<td>0.57</td>
<td>0.70</td>
<td>0.06</td>
<td>0.50</td>
<td>1.32</td>
<td>22.70</td>
<td>0.01</td>
<td>2.90</td>
<td>5.56</td>
</tr>
<tr>
<td>H2,7</td>
<td>14.09</td>
<td>1.14</td>
<td>17.19</td>
<td>27.56</td>
<td>1.21</td>
<td>0.82</td>
<td>0.07</td>
<td>1.06</td>
<td>1.60</td>
<td>24.18</td>
<td>0.73</td>
<td>2.85</td>
<td>4.08</td>
</tr>
<tr>
<td>L12,7</td>
<td>14.99</td>
<td>1.20</td>
<td>18.66</td>
<td>22.04</td>
<td>1.31</td>
<td>0.80</td>
<td>0.06</td>
<td>1.09</td>
<td>1.18</td>
<td>18.37</td>
<td>1.08</td>
<td>3.52</td>
<td>4.70</td>
</tr>
<tr>
<td>LL2,7</td>
<td>15.33</td>
<td>1.19</td>
<td>19.13</td>
<td>19.79</td>
<td>1.42</td>
<td>0.80</td>
<td>0.06</td>
<td>1.19</td>
<td>1.03</td>
<td>16.63</td>
<td>1.26</td>
<td>3.88</td>
<td>5.04</td>
</tr>
<tr>
<td>R1,8</td>
<td>13.78</td>
<td>1.07</td>
<td>16.67</td>
<td>24.80</td>
<td>1.15</td>
<td>0.83</td>
<td>0.06</td>
<td>0.97</td>
<td>1.49</td>
<td>23.18</td>
<td>2.70</td>
<td>5.28</td>
<td>4.97</td>
</tr>
<tr>
<td>Mg-rich chondrules5,10</td>
<td>25.41</td>
<td>1.33</td>
<td>22.77</td>
<td>1.55</td>
<td>1.89</td>
<td>1.12</td>
<td>0.06</td>
<td>0.64</td>
<td>1.42</td>
<td>0.07</td>
<td>1.16</td>
<td>-3.01</td>
<td>-2.13</td>
</tr>
<tr>
<td>Fe-rich chondrules6,11</td>
<td>22.92</td>
<td>0.55</td>
<td>15.82</td>
<td>18.23</td>
<td>1.46</td>
<td>1.45</td>
<td>0.03</td>
<td>2.65</td>
<td>1.15</td>
<td>33.12</td>
<td>-0.49</td>
<td>4.40</td>
<td>9.40</td>
</tr>
<tr>
<td>CAIs5,13</td>
<td>5.60</td>
<td>17.21</td>
<td>11.84</td>
<td>0.24</td>
<td>21.96</td>
<td>0.47</td>
<td>1.45</td>
<td>1.28</td>
<td>0.02</td>
<td>0.01</td>
<td>-22.5</td>
<td>-44.0</td>
<td>-4.14</td>
</tr>
<tr>
<td>Mg-rich ureilites5,14</td>
<td>24.73</td>
<td>0.38</td>
<td>21.31</td>
<td>7.18</td>
<td>1.38</td>
<td>1.16</td>
<td>0.02</td>
<td>3.63</td>
<td>0.34</td>
<td>18.89</td>
<td>-2.80</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Fe-rich ureilites5,14</td>
<td>23.01</td>
<td>0.28</td>
<td>18.92</td>
<td>14.42</td>
<td>0.79</td>
<td>1.22</td>
<td>0.01</td>
<td>2.82</td>
<td>0.76</td>
<td>51.50</td>
<td>-0.63</td>
<td>4.00</td>
<td>9.80</td>
</tr>
<tr>
<td>Fe-rich UPB end member</td>
<td>23.12 ±1.8</td>
<td>0.61±0.11</td>
<td>16.37±1.35</td>
<td>16.89±1.26</td>
<td>1.49±0.2</td>
<td>1.42</td>
<td>0.04</td>
<td>2.55</td>
<td>1.07</td>
<td>30.56</td>
<td>-0.69</td>
<td>3.88</td>
<td>8.78</td>
</tr>
<tr>
<td>Mg-rich UPB end member</td>
<td>24.6±2</td>
<td>1.07±0.6</td>
<td>20.48±2.5</td>
<td>7.05±0.6</td>
<td>1.75±0.7</td>
<td>1.23</td>
<td>0.05</td>
<td>1.83</td>
<td>0.43</td>
<td>11.71</td>
<td>-2.18</td>
<td>0.02</td>
<td>4.24</td>
</tr>
<tr>
<td>Venera 13 basalt15</td>
<td>6.87±0.37</td>
<td>8.36 ±1.6</td>
<td>21.08 ±1.4</td>
<td>7.23 ±2</td>
<td>5.07 ±0.7</td>
<td>0.33</td>
<td>0.40</td>
<td>0.61</td>
<td>0.34</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model basalt (B)</td>
<td>6.87±0.36</td>
<td>8.36 ±1.1</td>
<td>21.08 ±0.9</td>
<td>7.23 ±2</td>
<td>11.44 ±0.7</td>
<td>0.33</td>
<td>0.40</td>
<td>1.37</td>
<td>0.34</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALM-A (Trachyandesite)16</td>
<td>2.90</td>
<td>7.76</td>
<td>28.08</td>
<td>4.33</td>
<td>5.21</td>
<td>0.10</td>
<td>0.28</td>
<td>0.67</td>
<td>0.15</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References: 1Burbine and O’Brien (2004); 2Jarosewich (1990); 3Clayton and Mayeda (1996); 4Mason and Wiik (1962b); 5Mason and Wiik (1962a); 6Newton et al. (2000); 7Clayton et al. (1991); 8Schulze et al. (1994); 9Hezel and Palme (2010); 10Clayton et al. (1983); 11Krot et al. (2006); 12McKeegan et al. (1998); 13Srinivasan et al. (2000); 14Warren (2012); 15Surkov et al. (1983); 16Bischoff et al. (2014).

A maximum uncertainty of 1% on the O-isotope values was considered in the modelling.
Supplementary Information References

