

 $$\ensuremath{\mathbb{C}}\xspace$ 2020 The Authors Published by the European Association of Geochemistry

Magmatic crystallisation of Martian Fe/Mg-rich clay minerals via igneous differentiation

J.-C. Viennet, S. Bernard, C. Le Guillou, V. Sautter, P. Schmitt-Kopplin, O. Beyssac, S. Pont, B. Zanda, R. Hewins, L. Remusat

Supplementary Information

The Supplementary Information includes:

- Materials and Methods
- Supplementary Information References

Materials and Methods

SEM & TEM

Scanning electron microscopy (SEM) and EDXS mapping was performed on a thin section of Nakhla using a SEM-FEG Ultra 55 Zeiss (IMPMC - Paris, France) microscope operating at a 15-kV accelerating voltage and a working distance of 7.5 mm for imaging with backscattered electrons and EDXS mapping. Transmission electron microscopy in scanning mode (STEM) was performed on FIB foils using a Thermofisher Titan Themis 300 microscope operated at 300 keV (CCM – Lille, France). TEM-based hyperspectral EDXS data were obtained using the super-X detector system equipped with four windowless silicon drift detectors with a high sensitivity for light elements. The probe current was set at maximum 200 pA with a dwell time at 10 µs per pixel.

FIB

Focused ion beam (FIB) ultrathin sections were extracted from the mesostasis of Nakhla using an FEI Strata DB 235 (IEMN, Lille, France). Milling at low Ga-ion currents minimises common artefacts including: local gallium implantation, mixing of components, creation of vacancies or interstitials, creation of amorphous layers, local compositional changes or redeposition of the sputtered material on the sample surface (Wirth, 2009).

EDXS data processing

A key aspect of this work is the post-processing of the collected EDXS hyperspectral data, performed using the Hyperspy pythonbased package (De La Pena *et al.*, 2017). The signal was first denoised using PCA and then fitted by a series of Gaussian functions and a physical model for background/bremsstrahlung. The integrated intensities of the Gaussian functions were used to quantify the compositions of the clay minerals thanks to the Cliff-Lorimer method, using experimentally determined k-factors. Absorption

3

correction was taken into account, which is mandatory to correct for the re-absorption within the sample of oxygen X-rays. These steps correct for the thickness of the sample. Finally, end-member phases were identified and their spectra used as inputs for linear combination fitting (multiple linear least square fits). Pixels of similar composition were given the same colors scaled as a function of the proportion of each phase.

Supplementary Information References

- De La Pena, F., Ostasevicius, T., Tonaas Fauske, V., Burdet, P., Jokubauskas, P., Nord, M., Sarahan, M., Prestat, E., Johnstone, D.N., Taillon, J. *et al.* (2017) Electron Microscopy (Big and Small) Data Analysis With the Open Source Software Package HyperSpy. *Microscopy and Microanalysis* 23, 214–215.
- Wirth, R. (2009) Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. *Chemical Geology* 261, 217–229.

