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The V isotope composition of martian meteorites reveals that Bulk Silicate Mars
(BSM) is characterised by δ51V=−1.026 ± 0.029 ‰ (2 s.e.) and is thus ∼0.06 ‰
heavier than chondrites and ∼0.17 ‰ lighter than Bulk Silicate Earth (BSE). Based
on the invariant V isotope compositions of all chondrite groups, the heavier V isotope
compositions of BSE and BSM relative to chondrites are unlikely to originate from
mass independent isotope effects or evaporation/condensation processes in the
early Solar System. These differences are best accounted for by mass dependent frac-
tionation during core formation. Assuming that bulk Earth and Mars both have a
chondritic V isotopic compostion, mass balance considerations reveal V isotope
fractionation factors Δ51Vcore-mantle as substantial as −0.6 ‰ for both planets. This
suggests that V isotope systematics in terrestrial and extraterrestrial rocks potentially

constitutes a powerful new tracer of planetary differentiation processes accross the Solar System.
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Introduction

Vanadium is a refractory and moderately siderophile element
with the two naturally occurring isotopes 51V and 50V.
Variations of 51V/50V reported for terrestrial and extraterrestrial
samples have been attributed to various processes, such as
heterogeneous distribution of nucleosynthetically produced V
(Nielsen et al., 2019), kinetic and equilibrium mass dependent
isotope fractionation during condensation from the protosolar
nebula (Wu et al., 2015; Nielsen et al., 2019), early irradiation
by solar irradiation (Lee et al., 1998; Gounelle et al., 2006;
Sossi et al., 2017), exposure of meteoroids to galactic cosmic rays
(GCR) during their transition to Earth (Hopkins et al., 2019), and/
or magmatic differentiation (Prytulak et al., 2017). Since V has
only two isotopes, it is difficult to discriminate among the differ-
ent processes that can lead to V isotope variations in geological
material. Therefore, additional constraints are needed to inter-
pret V isotope signatures in cosmochemical and geochemical
contexts. To further explore the origin of δ51V variations (where
δ51Vsample= ((51V/50V)sample/(51V/50V)AA− 1)× 1000,withAAbeing
the Alfa Aesar reference solution) among terrestrial planets, a
comprehensive set of V isotope data for martian meteorites
was obtained. These data are compared with the value for chon-
drites of δ51V=−1.089 ± 0.029 ‰ (2 s.e.) (see Supplementary
Information) to provide additional constraints on potential
accretionary sources for Mars, and to investigate the possible
mechanisms of V isotope fractionation during planetary differ-
entiation and igneous processes.

Results and Discussion

The 24 martian meteorites investigated here represent a petro-
logic range of shergottites (basaltic, olivine-phyric, lherzolitic),
clinopyroxene-rich cumulates (nakhlites) and orthopyroxenite
(Table 1). The measured δ51V for martian meteorites display a
rather restricted range of values from−1.25 to−0.89‰ (Table 1)
with a mean of δ51V=−1.043 ± 0.034 ‰ (2 s.e.). Due to their
young exposure ages and relatively low Fe/V ratios most samples
require very minor, if any, correction for spallation by GCR (see
Supplementary Information). Corrected δ51V values are all
within error of each other and show no correlation with petro-
logic type or indicators of melting or fractional crystallisation
(Fig. 1). Pooled data for the different martian meteorite groups
yield indistinguishable mean δ51V (Table 1; Supplementary
Information), further supporting a limited effect of magmatic
processes, such as partial melting and fractional crystallisation,
on V isotopes. This inference is consistent with the absence of
discernible, systematic δ51V variations among terrestrial perido-
tites and basalts (see Supplementary Information), as well as
lunar rock data corrected for GCR effects (Hopkins et al., 2019).

Invariant V isotope compositions recorded in martian
meteorites collectively indicate that BSM (and by analogy BSE)
inherited its δ51V signature during its accretion and/or differen-
tiation history. Here, the GCR corrected and error weighted
average V isotope composition of martian meteorites (Table 1)
is used to derive the best estimate for the V isotope source
signature of BSM, which yields δ51V=−1.026 ± 0.027 ‰
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(2 s.e., MSWD= 0.99). This value is markedly different from the
mean δ51V of BSE (−0.856 ± 0.020‰, 2 s.e.). Understanding the
cause(s) of V isotope variations among terrestrial planets could
potentially provide constraints on the accretion history and
building blocks of Earth andMars, as well as isotopic effects dur-
ing planetary differentiation. In the following, we explore pos-
sible explanations for the V isotope difference between Mars
and chondrites, and discuss the implications for how BSM
and BSE could have acquired their V isotope compositions.

Whereas stable isotope systems such asMg, Si, Ca, and Fe
in martian samples (Armytage et al., 2011; Magna et al., 2015;
Sossi et al., 2016; Hin et al., 2017; Magna et al., 2017) show only

limited, if any, deviations from chondritic values, large nucleo-
synthetic isotope anomalies have been observed for many other
elements in chondrites and planetary materials including Mars
(e.g., 54Cr, 50Ti, 17O, 62Ni; Warren, 2011). Given that Mars likely
accreted very rapidly and early relative to Earth (Dauphas and
Pourmand, 2011), the V isotope difference between Mars and
Earth could denote primary spatial variability and/or temporal
evolution of the nucleosynthetic V isotope composition of
planetary accretion source material in the inner Solar System
(e.g., Warren, 2011). However, although V isotope compositions
of bulk carbonaceous chondrites have been proposed to correlate
broadly with nucleosynthetic anomalies of 54Cr (Nielsen et al.,
2019), subsequent studies have found that the V isotope

Table 1 Vanadium isotope data for martian meteorites.

Sample Fe$ (mg/g) V$ (μg/g) CRE age¶

(Ma)
δ51Vmeas 2 s.d. splits n δ51Vcorr

§

Basaltic shergottites

Los Angeles
001

224 258 3.0 −0.95 0.12 3 8 −0.94

NWA 856 132 273 2.6 −0.94 0.13 1 10 −0.94
NWA 4864 153 325 3.0 −1.11 0.23 3 8 −1.10
Shergotty 173 310 3.0 −0.89 0.19 2 8 −0.89
Zagami 141 312 3.0 −1.15 0.23 2 14 −1.14

Error weighted group average −0.97
Olivine-phyric shergottites

EETA 79001 A 143 210 0.7 −1.02 0.19 2 6 −1.02
SaU 005 143 196 1.2 −1.12 0.24 2 14 −1.12
SaU 051 150 204 1.2 −1.03 0.21 2 11 −1.03
SaU 094 149 212 1.2 −1.11 0.20 2 4 −1.11
NWA 1068 155 207 2.8 −1.11 0.16 6 22 −1.10
LAR 06319 159 202 3.3 −1.04 0.16 2 5 −1.03
Y-980459 144 213 1.1 −1.00 0.09 1 4 −1.00
NWA 4925 149 181 0.6 −0.98 0.19 3 9 −0.98
NWA 6162 142 112 1.0 −0.90 0.15 1 4 −0.89
DaG476 122 167 1.0 −1.09 0.13 3 11 −1.09
RBT 04262 201 212 2.1 −1.04 0.06 1 3 −1.04

Error weighted group average −1.03
Lherzolitic shergottites

ALH 77005 156 162 4.3 −1.11 0.12 3 11 −1.10
NWA 1950 168 140 4.1 −1.00 0.10 2 9 −0.99
Y-000097 155 180 4.6 −1.01 0.14 1 4 −1.00

Error weighted group average −1.03
Nakhlites

Nakhla 160 192 11.6 −1.25 0.19 1 5 −1.23
MIL 03346 137 195 9.5 −1.08 0.14 2 6 −1.07
NWA 817 154 181 10.0 −0.98 0.15 1 2 −0.96
Y-000593 117 125 11.8 −1.03 0.22 1 7 −1.01

Error weighted group average −1.06
Orthopyroxenite

ALH 84001 136 201 14.7 −1.09 0.15 1 4 −1.07
Error weighted average Mars −1.026

2 s.e. 0.027

MSWD 0.991

$ Iron and V concentrations are either from the literature (in italics; Lodders, 1998; Dreibus et al., 2000; Sautter et al., 2002; Gillet et al., 2005; Basu Sarbadhikari et al., 2009; Shirai
and Ebihara, 2009; Kuehner et al., 2011), measured by ICPMS at WHOI (bold), or estimated based on yield during column chemistry.
¶ CRE ages from Eugster et al. (2002), Mathew et al. (2003), Christen et al. (2005), Nagao and Park (2008), Nagao et al. (2008), Nishiizumi et al. (2011) and Wieler et al. (2016)
except for NWA4864, which is assumed similar to the other basaltic shergottites.
§ Vanadium isotope compositions corrected for spallogenic production of 50V using the equation: δ51Vcorr= δ51Vmeasþ [Fe] ×CRE × 2.1 × 10−6/[V] (Hopkins et al., 2019).
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variation in bulk chondrites can be ascribed to recent production
of 50V fromGCR spallation processes (Hopkins et al., 2019). Car-
bonaceous, ordinary, enstatite and Rumuruti chondrite data cor-
rected for this effect all display uniform δ51V=−1.089 ± 0.029‰
(n= 14, 2 s.e.; see Supplementary Information). The lack of V
isotope variation in chondrites compared with the large varia-
tions in e.g., 54Cr and 50Ti implies that nucleosynthetic V isotope
anomalies, if they exist, are unlikely to induce planetary scale V
isotope heterogeneity. Similarly, irradiation processes are
unlikely to account for planetary V isotope variations given
the large abundance variations of CAIs, the most likely carriers
of irradiation-induced V isotope anomalies (Sossi et al., 2017), in
chondrites that display uniform bulk V isotope compositions. For
these reasons, V isotope variations among terrestrial planets
most likely do not reflect disparities in the signatures of their
accretionary materials, but are the result of planetary processes.

Although BSE has a markedly heavier composition than
other solar system bodies, there are still analytically significant
differences between BSM and chondrites (Fig. 2). Two sample
t tests demonstrate that the datasets of the BSM and chondrites
are characterised by statistically distinct means (see Supple-
mentary Information). Monte Carlo simulations using the raw
datasets of the BSM and chondrites that include the individual
sample errors show that there exists a difference of 0.058 ±
0.051 ‰ (1 s.d.) between these two populations, with a proba-
bility of ∼87 % that the V isotope composition of the BSM is
heavier than that of chondrites. Using the mean δ51V composi-
tions of the BSM and chondrites, instead of the raw data, to
compute these Monte Carlo simulations yields a systematic dif-
ference of 0.067 ± 0.042‰ (1 s.d.) between BSMand chondrites.
In the likely absence of mass independent V isotope effects
(nucleosynthetic or irradiation-related) on the planetary scale,
we propose that the most straightforward explanation for the
V isotope disparity between differentiated (Earth, Mars) and
non-differentiated (chondrites) bodies corresponds to small
but non-negligible isotopic fractionation during core formation.

Considering that (i) the martian core comprises ∼18 %
by mass of the planet (Yoshizaki and McDonough, 2020),

(ii) ∼27–60 % of martian V resides in the core (see Supplemen-
tary Information), and (iii) Δ51VBSM-chondrites= 0.067 ± 0.042 ‰,
the martian core should be characterised by δ51V∼−1.11 to
−1.38‰. This requires a metal-silicate isotope fractionation fac-
tor ofΔ51Vcore-mantle=−0.04 to−0.40‰ (Fig. 3). Regarding BSE,
it is generally assumed that the main phase of metal segregation
during terrestrial core formation readily accounts for the
depletion of V in the silicate Earth (O’Neill, 1991; Chabot and
Agee, 2003; Wade and Wood, 2005), with 40–50 % of terrestrial
V now residing in the core (e.g., Wade and Wood, 2005). If bulk
Earth is taken to be chondritic for V isotopes, then mass balance
dictates that the core is characterised by δ51V=−1.39 ± 0.10‰,

10

100

1000

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5

- ALH 84001
- Nakhlites
- Lherz. Sherg.
- Ol Sherg.
- Basalt Sherg.

δ 51V

V
/C

e

Figure 1 Martianmeteorite vanadium isotopic data corrected for
GCReffects plotted against V/Ce ratios. Error bars are 2 s.d. as listed
in Table 1. Given that V and Ce have different partition coefficients
during fractional crystallisation and melting, variations in V/Ce
likely reflect a combination of these processes. The lack of system-
atic V isotope variation over the entire range of V/Ce implies that
magmatic processes did not induce detectable V isotope variation
on Mars. Ce concentrations from Yoshizaki and McDonough
(2020); V concentrations from Table 1. Note log scale on y axis.

Figure 2 Vanadium isotope data for different sample types from
the Solar System. Data for terrestrial samples are from Prytulak
et al. (2013), Wu et al. (2018) and Qi et al. (2019); chondrite data
are from Nielsen et al., (2019) and this study (Table S-2). All data
have been corrected for spallation-produced 50V. Error bars for
each sample group are 2 s.e. weighted by the individual sample
error bars shown in Table 1. Shaded areas denote the average
for those objects and error weighted 2 s.e. of the entire data pop-
ulation. Chondrite averages have been weighted by individual
measurement errors.

Figure 3 Modelled V isotope fractionation factors between the
core and mantle of Earth (blue) and Mars (red) as a function of
the fraction of total V that entered the core.
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which corresponds to ametal-silicate isotope fractionation factor
of Δ51Vcore-mantle=−0.53 ± 0.14 ‰ (using Δ51VBSE-chondrites=
0.233 ± 0.037‰, 2 s.e.). This value is somewhat larger than that
required to explain the BSM–chondrite V isotope offset (Fig. 3),
which could imply variations in V isotope fractionation during
planetary differentiation.

The metal-silicate isotope fractionation factor required to
satisfy V geochemical constraints (Δ51Vmetal-silicate up to −0.6‰)
is substantially larger than values found for other redox sensitive
stable isotope systems like Mo, Fe and Cr (all <0.1‰; Hin et al.
(2013), Bonnand et al. (2016), and Elardo et al., (2019)). A small
core–mantle isotope fractionation factor for V is also suggested
by the only available investigation of V isotope fractionation dur-
ing metal–silicate partitioning, where experiments at 1.5 GPa
and ∼1900 K revealed no detectable V isotope fractionation out-
side the analytical uncertainty (∼±0.2 ‰; Nielsen et al., 2014).
However, Earth’s core likely formed through a complex,
multi-stage process, starting as a reduced body that gradually
evolved to more oxidised as Earth grew (e.g., Wade and
Wood, 2005), with a final stage of core segregation in the form
of immiscible metal and sulfide melts after the Moon-forming
giant impact (e.g., O’Neill, 1991). Additional experiments of V
isotopic partitioning at higher pressure-temperature conditions,
for variable oxygen fugacities and/or chemical compositions (e.g.,
presence or not of light elements and other metal alloys) are
needed to test the hypothesis of V isotope fractionation during
core formation. Such effects have, for example, been observed for
Fe isotopes (Elardo et al., 2019). Notably, the sensitivity of V
valence state to the oxygen fugacity during core formation offers
a promising alternative for potentially inducing significant V iso-
tope fractionation during metal-silicate partitioning. For exam-
ple, the oxygen fugacity during core formation on Mars and
Earthwere likely different (Wood et al., 2006) andmay have been
a contributing factor in the apparent V isotope fractionation
difference between these two planets.

One outstanding challenge is to explain the strikingly
heavy V isotope composition of BSE compared to BSM. Future
experimental investigations may shed light on the possibility
for higher temperatures and pressures during terrestrial core for-
mation, and/or late segregation of the Hadean matte (which
seemingly did not happen on Mars) to account for this differ-
ence. Based on current constraints, it appears that the late stage
sulfide segregation on Earth is unlikely to have removed sub-
stantial amounts of V to the core (e.g., Wade and Wood,
2005). We, therefore, consider that the heavy V isotope compo-
sition of BSE was most likely established during the main phase
of core segregation, beforeMoon formation. Alternative avenues
of investigation to explain the heavy V isotope composition of
BSE and BSM may require unusual isotope fractionation proc-
esses to operate at the core–mantle boundary, as recently pro-
posed for Fe in the case of thermodiffusion (Lesher et al., 2020).
Nonetheless, we speculate that identifying the process(es)
responsible for V isotope variations in terrestrial planets will ulti-
mately allow better understanding the conditions of planetary
differentiation in the Solar System.
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