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Magmatic volatile phases within crustal silicic magma domains influence key volcanic
processes such as the build up to eruptions and formation ofmagmatic-hydrothermal
ore deposits. However, the extent and nature of fluid-melt interaction in such envi-
ronments is poorly understood, as geochemical signals in volcanic rocks originating
from pre-eruptive volatile processes are commonly overprinted by syn-eruptive
degassing. Here, we use δ37Cl as a conservative tracer of brine-melt interaction on
a broad suite of silicic volcanic rocks from Iceland. We find that the δ37Cl values of
silicic rocks are systematically shifted tomore negative values compared to associated
basalts and intermediate rocks by up to 2.9‰. These large shifts cannot be explained
by well known processes inherent to silicic magma genesis, including crustal assimi-

lation, mineral-melt fractionation and syn-eruptive degassing. Instead, we show that low δ37Cl values in silicic rocks can be
attributed to assimilation ofmagmatic brines that are formed and stored in long lived crustal magmamushes. Our results indicate
that magmatic brine assimilation is a fundamental, but previously unrecognised part of rhyolite genesis.
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Introduction

Magmatic volatiles play a fundamental part during silicic
magma genesis and the formation of associated ore deposits.
Chlorine is among the most abundant volatile elements in
igneous rocks and may become concentrated enough in late
stage silicic melts to exsolve and form hydrosaline liquids,
i.e. high density Cl-enriched aqueous fluids or hydrosaline
brines (Webster, 2004). As chlorine is a hydrophile element,
its isotopic fingerprint has been used to trace volatile sources
in igneous rocks and hydrothermal fluids (Barnes et al., 2008; Li
et al., 2015). Lavas associated with subduction zones and oce-
anic islands have a range of δ37Cl values from −3 to þ3 ‰,
likely due to incorporation of subduction fluids, recycled
marine sediments and altered oceanic crust into the mantle
(John et al., 2010; Barnes and Sharp, 2017). In contrast, the
depleted upper mantle (DMM) has a restricted δ37Cl variability
of −0.2 ± 0.3‰ (Sharp et al., 2013), reflecting the limited δ37Cl
fractionation from high temperature magmatic processes
(Schauble et al., 2003). The majority of chlorine isotope studies
on igneous rocks have been conducted on basaltic rocks,
whereas published δ37Cl data for silicic rocks is limited, with
40 out of 44 published analyses coming from a single volcanic
system, theMono Craters, USA (Barnes et al., 2014). This study
was designed to explore if and how δ37Cl systematics can pro-
vide new insights into silicic magmatic processes such as
assimilation and brine-melt interaction, using Iceland as a test
site.

Chlorine Isotope Systematics in Silicic
Rocks

We present new δ37Cl and δ18O data for a sample set (n = 16)
focusing on neovolcanic extrusive silicic (SiO2 > 65 wt. %) and
intermediate (SiO2 = 52-65 wt. %) rocks from Iceland (Tables
S-1, S-2). Together with previously published δ37Cl and δ18O
data on Icelandic basalts (Halldórsson et al., 2016), the samples
represent the full chemical range between subalkaline-
tholeiitic rift zone, and transitional to alkaline propagating rift
and off-rift magma suites in Iceland (Fig. S-1), spanning a SiO2

range of 44.4-77.7 wt. % and Cl concentrations between 17 and
3988 ppm (Figs. 1, S-2). The samples cover the main types of
silicic rocks in Iceland, i.e. dacites and alkaline and subalkaline
rhyolites (Jónasson, 2007), and include both obsidians and
tephras (i.e. products of effusive vs. explosive eruptions). All
studied volcanoes are situated on land and are free of seawater
influence (Halldórsson et al., 2016).

Significant Cl variation is present at any given SiO2 con-
tent in the basaltic (17–1269 ppm), intermediate (130–942 ppm)
and silicic (282–3988 ppm) samples (Fig. S-2). These ranges are
similar to published Cl concentrations in melt inclusions (MIs)
from corresponding locations (Fig. S-3). The δ37Cl value of all
analysed samples (n= 14) vary from −1.9 to þ1.3 ‰ (1σ=
±0.2 ‰) (Fig. 1a,b). The basaltic (n= 3) and intermediate
(n= 4) samples have δ37Cl values between −0.4 and þ1.3 ‰,
overlapping with the known range of Icelandic basalts of −0.6 to
þ1.4‰ (Halldórsson et al., 2016). In contrast, the δ37Cl values of
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the silicic samples from this study (n= 8) and those previously
published (n= 3; Halldórsson et al., 2016) deviate from the
basaltic-intermediate range towards more negative values of
−1.9 to−0.6‰ (Fig. 1b), except for a single outlier (SAL-74) with
δ37Cl=þ0.9 ‰.

Local δ37Cl variability in Icelandic rhyolites appears to be
small (≤0.5 ‰ for Hekla: H3, H4, H5; and Askja: ASD1L,
ASD14L) compared to the large range of −1.9 to 0.0 ‰

reported for the Mono Crater rhyolites (Barnes et al., 2014)
(Fig. 1). Rift, propagating rift and off-rift samples define dis-
tinct fields in the SiO2-δ37Cl and δ18O-δ37Cl diagrams
(Figs. 1b, 2), suggesting a possible correlation between
volcano-tectonic setting and δ37Cl (see Supplementary
Information S-2).

Origin of Large δ37Cl Variability: Sources
Versus Processes

Our dataset demonstrates that silicic rocks in Iceland have more
negative δ37Cl values relative to associated basalts and inter-
mediate rocks. Whereas basalts inherit the δ37Cl signatures of
their mantle sources (Halldórsson et al., 2016), the shift to more
negative δ37Cl values in silicic rocks must reflect a process or a
combination of processes taking place during rhyolite genesis,
such as mineral-melt fractionation, degassing and/or
assimilation.

Rayleigh δ37Cl fractionations between HCl(g), minerals
and silicic melt are expected to be small, based on theoretical
equilibrium fractionation factors of Schauble et al. (2003)

(a)

(b)

Figure 1 Chlorine isotope variations vs. (a) Cl concentrations and (b) SiO2. Silicic rocks in Iceland have lower δ37Cl values than basalts (data
from Halldórsson et al., 2016), overlapping with rhyolites from the Mono Craters, USA (Barnes et al., 2014). Arrows in (a) indicate the
effects of the small equilibrium isotope fractionations caused by fractional crystallisation and degassing, and the large kinetic isotope
fractionation during magmatic brine exsolution (Fortin et al., 2017) and assimilation on the δ37Cl and Cl composition of silicic melts.
The gray curve in (a) shows the effect of magmatic brine assimilation (in wt. %) on the Cl-δ37Cl values of a hypothetical rhyolite melt with
an average propagating rift basalt δ37Cl value ofþ0.7‰. The negative δ37Cl shifts between silicic rocks and basalts are illustrated in (b) by
arrows anchored at the average SiO2 concentrations and δ37Cl values of the rift, propagating rift and off-rift basalts. The 1σ uncertainty is
±0.2 ‰ for δ37Cl.
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extrapolated to magmatic temperatures (Δ37Clmineral-melt ≈
Δ37Clvapour-melt ≈ 0.2 ‰ at 600 °C). Thus, even extreme cases
of 90 % Cl removal by fractional apatite crystallisation or open
system degassing of HCl(g) only fractionate the δ37Clmelt values
by about −0.5 ‰. However, modal apatite abundances in our
samples are low (<2 %) and similar Cl concentrations in MIs
and matrix glasses imply an insignificant degree of syn-eruptive
chlorine degassing (Fig. S-3). Therefore, the combined effect of
fractional crystallisation and degassing on δ37Clmelt values of our
samples is negligible (<0.2‰). Moreover, similar δ37Cl values of
both obsidians and tephras indicate that δ37Cl fractionation is in-
dependent of eruption type and occurs within the crustal magma
domain prior to eruptions.

To test if assimilation of altered basaltic crust causes
negative δ37Cl shifts between rhyolites and basalts, we analysed
the δ18O compositions of our samples (Fig. 2). In Iceland, low
δ18Orock values relative to pristine basaltic values (þ4.8 to
þ5.8‰; Thirlwall et al., 2006) are used to recognise assimilation
(or partial melting) of altered crust, which has been shifted to low
δ18O signatures (≤þ2 ‰) by hydrothermal alteration with low
δ18O meteoric water (Gautason and Muehlenbachs, 1998). We
note that basalts and intermediate rocks from all three volcanic
settings display δ18O values between þ3.4 and þ5.2‰ (Fig. 2),
typical for Icelandic basalts (Thirlwall et al., 2006). Silicic rocks
from the propagating rift and off-rift zones have basalt-like
δ18O values ofþ4.0 toþ6.1‰, whereas the lower andmore var-
iable δ18O values from −0.5 to þ4.7‰ in the rift zone rhyolites
(Fig. 2) indicate variable degrees of crustal assimilation.

However, there is no correlation between δ37Cl and δ18O
(Fig. 2). For example, silicic samples with the most negative
(H3a) and positive δ37Cl values (SAL-74) have normal δ18O val-
ues, while the two samples with the lowest δ18O values (ASD1L,
ASD14L) show relatively small δ37Cl shifts. This indicates that
the negative δ37Cl shifts in Icelandic rhyolites are not caused
by assimilation of δ18O-depleted altered crust, but by an addi-
tional process. Conversely, this suggests that hydrothermally
altered crust in Iceland has a basalt-like δ37Cl range, consistent
with the basalt-like δ37Cl values in Icelandic hydrothermal fluids
(Stefánsson and Barnes, 2016) and the lack of δ37Cl fractionation
resulting from hydrothermal alteration (Cullen et al., 2019). In

contrast, boron another fluid-mobile element, displays anoma-
lous positive δ11B values in Icelandic silicic rocks that correlate
with decreasing δ18O, and that have thus been explained by
crustal assimilation (Rose-Koga and Sigmarsson, 2008).

Extensive previous work on the Hekla volcano demon-
strates that for non-volatile element stable isotope systems stud-
ied thus far, fractionations between rhyolites and basalts are
either negligible or can be explained by fractional crystallisation
(Supplementary Information S-4). Our silicic Hekla samples
(H3a, H4, H5) display the largest δ37Cl shifts (up to −2.9 ‰)
compared to corresponding basalts (Fig. 1). This comparison
highlights that δ37Cl selectively records a process relating to
the pre-eruptive volatile history of silicic magmas that is not
recorded by other, non-volatile stable isotope systems.
Indeed, a complicated pre-eruptive volatile history is also
reflected by high Cl variability in Icelandic propagating rift and
rift rhyolites (50 to 2600 ppm) (Fig. S-2), likely reflecting a
combination of fractional crystallisation, partial melting,
accumulation of fractional melts from volatile heterogeneous
sources as well as episodic exsolution and resorption of mag-
matic volatile phases, including magmatic brines (Webster
et al., 2019; Supplementary Information S-3; Fig. 3a).

Chlorine isotope systematics provide a strict constraint on
the nature of a potential assimilant, which must have a negative
δ37Cl and elevated concentrations of Cl compared to the rhyo-
lites. These criteria best match a fluid assimilant with high Cl
concentrations (Classimilant/Clrhyolite >> 1) and low δ37Cl
(<−3‰) (Fig S-4). Magmatic hydrosaline fluids have by defini-
tion high Cl concentrations and may acquire highly negative
δ37Cl values during exsolution from dacitic (and more silicic)
melts due to kinetic diffusion effects, that cause considerable
fractionation of up toΔ37Clfluid-melt =−5‰ even at high temper-
atures (Fortin et al., 2017) (Fig. 3b). Therefore, in terms of
predicted Cl-δ37Cl values, magmatic brine is an assimilant that
near-perfectly matches the observed δ37Cl shifts in Icelandic
rhyolites (Fig. S-4). Anomalously negative δ37Cl values of down
to −5.6 ‰ have been reported for saline fluid inclusions in
porphyry copper and iron oxide-copper-gold deposits, showing
that low δ37Cl brines do exist in magmatic-hydrothermal envi-
ronments (Gleeson and Smith, 2009; Nahnybida et al., 2009).

Figure 2 The δ18O-δ37Cl systematics of silicic rocks. Low δ18O values of rift-related silicic rocks result from assimilation of hydrothermally
altered, δ18O-depleted crust. Lack of correlation between δ18O and δ37Cl indicates that negative δ37Cl values of rhyolites are not caused
by crustal assimilation. The gray line shows the effect of magmatic brine assimilation in wt. % (Supplementary Information S-4). Mono
Craters field is drawn after data reported in Newman et al. (1988) and Barnes et al. (2014). The 1σ uncertainty is ±0.2‰ for δ37Cl, and smaller
than the size of the symbols for δ18O.
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Assimilation of Magmatic Brines

The presence of magmatic brine is a widely reported phenome-
non associated with silicic and intermediate magmas in the
upper crust. For example, brines are found in magmatic fluid
inclusions and are implicated in the formation of magmatic-
hydrothermal ore deposits globally (Audétat et al., 2008),
including in Iceland (Kremer and Bird, 2018). Crystallisation
of silicic melts that stall in the crust lead to late stage exsolution
of magmatic brines or hydrosaline fluids. Magmatic brines may
form by direct exsolution from melts with moderate Cl/H2O
ratios (>0.05 for granitic melts; Webster, 2004) at pressures
below about 1.5 kbar, by phase separation of a magmatic fluid
into low NaCl vapour and a high NaCl brine (up to NaCl >
85 wt. %) during decompression (Fig. 3c), or by condensa-
tion of magmatic vapour (Webster and Mandeville, 2007).
Magmatic brines are less dense and stable to lower tempera-
tures compared to melts, and once formed, may accumulate
in pore space or pool in roof zones of magma mushes forming
lenses (Fig. 3a) that can stay stable for over 1 Myr (Blundy et al.,
2015; Afanasyev et al., 2018; Edmonds and Woods, 2018).
Individual accumulations of silicic melts form over short time
scales (0.01 to 1 kyr time scales) compared to the long lifetimes
of the silicic magma mushes that they are part of (100 kyr – 1
Myr time scales) (Padilla et al., 2016; Cooper, 2019). Thus, cycles
of silicic melt production and crystallisation lead to repeated
production and accumulation of magmatic brines in long lived
magma mushes.

Our samples are chlorine undersaturated, similar to the
majority of felsic melt inclusions globally (Webster et al., 2019).
We envision that such chlorine undersaturatedmelts may, prior
to or during eruptions, assimilate ambient low δ37Cl magmatic
brines that have been formed by previous generations of silicic

intrusions within the same, long lived silicic magma mush
(Fig. 3a). Our bulk assimilation model shows that modest
amounts (ca. 0.5 wt. %) of addition of magmatic brines with
NaClequivalent = 16.5 wt. % and δ37Cfluid =−4 ‰ is sufficient
to explain the maximum observed δ37Cl shift of −2.9 ‰

between silicic rocks and basalts in our samples (Figs. 1b, S-4,
S-5). Assimilation of brines has been previously demonstrated
to take place in submarine basalts, that may directly assimilate
seawater-derived brines (Kendrick et al., 2013), and in silicic
melts, where surplus Cl contents have been interpreted as
assimilation of hydrosaline fluids of unknown origin (Webster
et al., 2019).

The common association of silicic magmas with brines
and the dominantly negative δ37Cl signatures observed in silicic
volcanic rocks that are difficult to reconcile with other known
magmatic processes suggest that magmatic brine assimilation
may be a fundamental process in silicic, long lived magma
mushes. Our results highlight that little is still known about
the storage and evolution of hydrosaline liquids in magma
mushes. The details of physical and chemical interactions
between brines and melts should be a fruitful target of future
research aiming to improve our understanding of silicic mag-
matism. Finally, we note that low δ37Cl magmatic vapours
and/or liquids residing in the roof zones of magma mushes
may become incorporated in eruption clouds or shallow hydro-
thermal systems (Fig. 3a). This process could, instead of direct
degassing of magmatic Cl, offer an alternative explanation to
the association of volcanic activity with negative δ37Cl signa-
tures in thermal springs and fumaroles in Guadeloupe,
Martinique (Li et al., 2015) and the Izu-Bonin-Mariana arc
(Barnes et al., 2008) as well as volcanic gases in Stromboli,
Italy (Liotta et al., 2017).

Figure 3 (a) Amodel of magmatic brine formation and assimilation in a long lived upper crustal magmamush. (b)Magmatic fluids exsolve
from silicic melts during late stage crystallisation and acquire negative δ37Cl values through kinetic fractionation (Fortin et al., 2017).
(c) Decompression-driven phase separation of a supercritical fluid produces a NaCl-rich brine and a NaCl-poor vapour with a maximum frac-
tionation of Δ37Clliquid-vapour= ±0.5 ‰ (Liebscher et al., 2006).
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