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Experimental Methods 

A tungsten-doped basaltic glass was synthesised for EXAFS measurements. Basalt powder was 
prepared originally from gel, mixed with 0.8 wt. % WO3 powder, and melted at 1473 K for 30 
min in a furnace under reduced H2-CO2 gas atmosphere (two log units below the wüstite-
magnetite buffer). Under this condition, tungsten exists in a silicate melt almost exclusively as 
W6+ (Wade et al., 2013). It was then quenched to a glass by being dropped into water. The 
chemical composition and homogeneity of the basaltic glass were examined with an electron 
probe micro-analyser equipped with a field-emission source (FE-EPMA, JEOL JXA-8530F) 
(Table S-1). 

At 1 bar, the EXAFS spectrum of the basaltic glass sample was collected at beamline 
BL01B1 at the SPring-8 synchrotron facility. High-pressure EXAFS measurements were 
carried out at beamline BL4A, Photon Factory, KEK with a beam focused to 5 µm × 5 µm area 
on a sample by using a KB mirror system. In this study, we calibrated the energy based on the 
white line peak of Na2WO4 • 2H2O at 10.198 keV by following Kashiwabara et al. (2013). The 
sample was compressed to high pressures in a DAC using diamond anvils with 300 µm culet 
size. The basalt glass was loaded into a sample chamber at the centre of an X-ray transparent 
gasket that was composed of an outer Kapton ring and an inner boron (+ epoxy) disk (Merkel 
and Yagi, 2005). Before compression, the sample chamber was about 80 µm across and 50–100 
µm thick. At high pressure, first we searched for a sample position in a DAC by a micro-X-ray 
mapping technique. An X-ray fluorescence (XRF) map for tungsten was collected based on its 
Lα line of tungsten (Fig. S-1). Subsequently high-pressure EXAFS measurements were 
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performed near the LⅢ absorption edge of tungsten in the fluorescence mode because of its 
relatively low concentration in the sample. The sample was irradiated from a direction 
perpendicular to the compression axis through the X-ray transparent gasket in order to avoid 
absorption of X-rays by diamond (anvils). The energy range for the EXAFS scans was 10.145–
10.566 keV. Pressure was measured based on a Raman shift of a diamond anvil (Akahama and 
Kawamura, 2004). No pressure change was observed before and after the EXAFS measurement. 

These EXAFS data were reduced using a REX2000 software (Rigaku Co. Ltd.) with a 
parameter generated by the FEFF 7.0 code (Zabinsky et al., 1995). The k3-weighted EXAFS 
oscillation was extracted from each spectrum in the range of 2.3–8.2 Å−1 except for two data 
points (Table 1). The Fourier transformation (FT) of the k3-weighted oscillation was performed, 
and the radial structural function was obtained. In order to extract information on the nearest 
neighbours of tungsten atoms from the radial structural function, the first-neighbour shell 
EXAFS was filtered out from high frequency noise and outer shells using Hanning window 
function. The filtered FT-EXAFS spectra were back-transformed to k-space using parameters 
extracted from the crystal structure of CaWO4 scheelite by the FEFF 7.0. Curve fitting analysis 
was performed for the first shell (W-O). 

 

 

Supplementary Table 
 

Table S-1 The chemical composition of the basaltic glass sample. 
 

 wt. % 

SiO2 46.16(25) 
TiO2 9.79(13) 
Al2O3 13.84(6) 
FeO 8.76(23) 
MgO 7.78(10) 
CaO 9.31(2) 
Na2O 4.46(13) 
K2O 0.13(1) 
WO3 0.78(8) 

Total 101.01 
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Supplementary Figure 
 

Figure S-1 Micro-XRF maps of tungsten in a basaltic glass sample at 48 GPa for searching 
sample position in a DAC. Incident X-ray with 10.5 keV was used to obtain the W Lα map. 
Maps were obtained for (a) 1500 μm × 1500 μm area by 31 × 31 steps and then (b) 100 μm × 
100 μm area by 26 × 26 steps by moving the sample with respect to the X-ray beam. The black 
circle in (a) indicates the area shown in (b). 
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