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Eukaryotes reached ecological importance in the late Neoproterozoic Era, some one
billion years after their emergence. Their slow rise to prominence has been ascribed to
prolonged environmental stagnation, but testing this idea requires an appraisal of the
evolution of atmospheric and ocean chemistry. Establishing a nuanced geochemical
history is, however, challenging due to the paucity of well preserved sedimentary
rocks. Here, we present new Mo isotope ratios from black shale units spanning
∼1560 to ∼1170 Ma. These results, combined with literature data, reveal potential
episodic expansions of oxygenated and/or mildly reducing conditions during the
Mesoproterozoic Era, suggesting fluctuating oxygen availability that could have
exerted a crucial control on the evolution of eukaryotes.
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Introduction

The Mesoproterozoic Era has been described as a time of cli-
matic, geochemical, and biological stasis. The relatively small
carbonate carbon isotope variations and the absence of
continental ice sheets contrast starkly with the following
Neoproterozoic Era when low latitude glaciations and huge car-
bon isotope excursions were prevalent. Neoproterozoic marine
environments also witnessed the diversification of eukaryotic
phytoplankton and animals, which have long been linked to
the surface oxygenation, while low oxygen availability in
Mesoproterozoic oceans may have limited eukaryotic diversity
and organismal complexity, generating a sluggish biosphere
(Anbar andKnoll, 2002). This traditional view, however, is evolv-
ing with a growing amount of newly reported Mesoproterozoic
fossils, such as the filamentous and lobate fossils, interpreted as
probable crown group red algae, in the ∼1600 Ma Tirohan
Dolomite of central India (Bengtson et al., 2017) and the
∼1560 Ma Gaoyuzhuang carbonaceous compressions closely
resembling modern benthic algae (Zhu et al., 2016).

If we accept the notion that life has evolved with the envi-
ronment, then these biological innovations should be considered
together with the redox changes in Mesoproterozoic oceans.
Indeed, existing data show that Mesoproterozoic deep waters
had variable redox chemistry ranging between oxic, euxinic (sul-
fidic), and ferruginous conditions (Wang et al., 2017). Within the
context of deep ocean redox fluctuations, there is a broad debate
on atmospheric oxygen levels. Some studies have advocated very
low concentrations of 0.1–1 % PAL (present atmospheric level;

Planavsky et al., 2020), yet others provided evidence for mini-
mum values of 1–4 % PAL (Zhang et al., 2016; Canfield
et al., 2018).

To develop and test these ideas, we present total organic
carbon (TOC), Fe speciation, Mo abundance and isotopic com-
positions (denoted as δ98MoNIST3134=0.25; Nägler et al., 2014) of
shale samples from Mesoproterozoic strata spanning from
∼1560 to ∼1170 Ma. Our results, combined with published data,
comprise the most comprehensive current Mo isotope record of
Mesoproterozoic marine settings and a valuable window into
state of ocean redox.

Geological Background and Samples

Samples were obtained from two drill cores in the Yanliao Basin,
North China (the Gaoyuzhuang and Hongshuizhuang
Formations) and from multiple outcrops of the Shennongjia
Group, South China (Fig. 1). The Gaoyuzhuang Formation is
composed of predominately carbonate rocks, and it can be di-
vided into four lithological members (Shang et al., 2019). Our
study focuses on Member III, where organic-rich calcareous
shales were deposited in a relatively deep water environment.
Based on zircon U–Pb ages, the time frame of Member III is con-
strained to ∼1580–1560 Ma (Tian et al., 2015). Above the
Gaoyuzhuang Formation, thick bedded dolostones of the
Yangzhuang and Wumishan Formations make up the majority
of the Jixian Group in North China. Subsequent transgression
promoted the offshore deposition of the Hongshuizhuang
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shales. No radiometric dating has been conducted for the
Hongshuizhuang Formation itself, but U–Pb ages of ∼1480
and ∼1440 Ma were reported from the underlying Wumishan
Formation and the overlying Tieling Formation, respectively
(Li et al., 2014).

The Shennongjia Group in the northern margin of the
Yangtze Block has been explored geochemically for TOC, trace
metals, and Cr isotopes (Canfield et al., 2018). Our samples
for Mo isotope analysis were collected from the Dayangping,
Taizi, Wenshuihe, and Songziyuan Formations. Organic-rich
sediments of the latter three formations are enriched in redox
sensitive elements, similar to otherMesoproterozoic black shales
(Canfield et al., 2018). The base of the Shennongjia Group is esti-
mated at ∼1400 Ma, while the uppermost layers deposited after
∼1100Ma (see Canfield et al., 2018, for detailed stratigraphic and
chronological descriptions).

Results

Our geochemical data are illustrated in Figure 2 (see Supplem-
entary Information for methods). Ratios of FeHR/FeT are rela-
tively high (>0.38) in the Gaoyuzhuang and Hongshuizhuang
Formations, but vary markedly through shales of the
Shennongjia Group. Note that the Shennongjia samples are
plotted sequentially by number and relative to stratigraphic posi-
tion, instead of exact depth, thus the FeHR/FeT variation does not
necessarily reflect secular change. For samples with FeHR/FeT >
0.38, their Fepy/FeHR ratios are generally <0.7, while instances of
elevated Fepy/FeHR (>0.7) exist in theHongshuizhuang and Taizi
Formations.Molybdenum isotope values range from−1.07‰ to
þ2.21 ‰ for the Gaoyuzhuang Formation, from −0.64 ‰ to
þ1.35 ‰ for the Hongshuizhuang Formation, and from −0.52
‰ to þ1.12 ‰ for the Shennongjia Group. The heaviest mea-
sured δ98Mo in the Gaoyuzhuang sediments coincides with
enriched TOC and Mo contents, as well as a positive swing of
the Fepy/FeHR profile.

Molybdenum Isotopes as a Palaeoredox
Proxy

Molybdenum isotopes are a well established proxy used to
reconstruct marine redox state. In modern oxygenated oceans,

the isotopically heavy seawater Mo signal (∼2.34 ‰) mainly
results from Mo uptake onto Mn oxide particles that preferen-
tially adsorb light Mo isotopes (Δ98MoSW−Mn-ox =∼3 ‰;
Siebert et al., 2003; Barling and Anbar, 2004). By contrast, in
euxinic basins (often hydrographically restricted today), espe-
cially when [H2S]aq exceeds 11 μM (Erickson and Helz, 2000),
Mo is efficiently removed from solution into sediments.
Molybdenum isotopes of these sediments can reach isotopically
heavy values close to open ocean seawater values (Neubert et al.,
2008). Such a near quantitative Mo transfer allows the use of
euxinic deposits to infer seawater Mo isotope compositions.
For sediments bathed under anoxic but non-euxinic or low
[H2S]aq-containing waters, a wide range of δ98Mo is observed
(with a preferential retention of light mass Mo isotopes in sedi-
ments), likely reflecting the non-quantitative trapping of dis-
solved Mo and complexation of Mo with metal oxides or
organic matter (Kendall et al., 2017).

The proportion of Fe among its geochemically reactive
phases can be indicative of the redox chemistry directly above
the accumulating sediments. The majority of our samples pos-
sess FeHR/FeT> 0.38 but Fepy/FeHR< 0.7 or slightly >0.7, defin-
ing deposition under ferruginous to intermittently euxinic
environments (Fig. 2; Poulton and Canfield, 2011). Since
[H2S]aq strongly affects the removal of Mo, it is likely that low
[H2S]aq would have imparted an isotope fractionation during
Mo burial. Accordingly, our measured δ98Mo valuesmay provide
a minimum constraint on coeval seawater composition. In addi-
tion, the low Feox/FeHR ratios of core materials and finely distrib-
uted pyrites under scanning electronmicroscope suggest aminor
influence of post-depositional alternation (Supplementary
Information).

Mesoproterozoic Molybdenum Record
from Black Shales

In order to investigate the evolution of marine oxygenation, we
compare our results with published δ98Mo data over geological
time (Fig. 3). Our compilation reveals broad changes in global
ocean redox during the Mesoproterozoic Era. Moderate δ98Mo
values (<1.35 ‰), including samples from the Hongshui-
zhuang Formation and Shennongjia Group, dominate the
Mesoproterozoic shale record, but excursions to higher δ98Mo
values are observed in the Gaoyuzhuang (δ98Momax = 2.21 ‰)
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Figure 2 Geochemical profiles for shales from the (a) Shennongjia Group, (b)Hongshuizhuang Formation, and (c)Gaoyuzhuang Formation
(Member III). The TOC and Mo contents of the Shennongjia Group are compiled from Canfield et al. (2018). Note that the Shennongjia
samples are plotted sequentially and relative to stratigraphic position, but not as a function of depth.
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and Xiamaling Formations (∼1400 Ma, δ98Momax = 1.74 ‰;
Diamond et al., 2018). On the basis of Mo isotope systematics,
such heavy δ98Mo values would require substantial sinks for iso-
topically light Mo on the seafloor. Does this mean that the ocean
was at least temporarily well oxygenated during the
Mesoproterozoic? We argue that these data should be inter-
preted cautiously and with considerations of the contemporane-
ous marine Mo inventory. It is expected that a well oxygenated
ocean would be characterised by heavy seawater δ98Mo and a
large dissolved Mo reservoir (and correspondingly enhanced
Mo enrichments in the few anoxic regions). We note, however,
that in the Gaoyuzhuang Formation highly elevated δ98Mo val-
ues occur at Mo concentrations that are much lower than
Phanerozoic equivalents (Fig. 3).

The lowMo concentrationsmay be partly attributed to the
calcareous and ferruginous nature of our Gaoyuzhuang samples.

Alternatively, the elevated δ98Mo values need not have been
associatedwith the same extent of seafloor oxygenation as today.
That is to say, if some intermediate redox sinks could scavenge
isotopically light Mo, but with relatively high burial efficiency,
elevated δ98Mo values could have accompanied sedimentary
Mo concentrations lower than those found in the Phanerozoic
(Asael et al., 2018). In the following section, we explore this
scenario mathematically through the ocean Mo mass bal-
ance model.

Model for Marine Redox Distribution

At steady state, the marine Mo input flux is balanced by removal
into oxic, strongly euxinic, and intermediate (mildly reducing,
including oxygenminimum zones, ferruginouswaters, and other
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low oxygen or intermittently euxinic settings) sinks. Of all the
fractionations involved, those related to the intermediate sink
are the least well constrained, yet an empirical fractionation of
0.7 ‰ is commonly chosen for this sink (Kendall et al., 2017).
With this isotope offset, a seawater δ98Mo of 2.21‰, as we sug-
gest for Member III of the Gaoyuzhuang Formation, can only be
achieved with modern-like ocean oxygenation (or nearly so;
Fig. 4). However, the magnitude of Mo isotope fractionation
under the intermediate contexts can span the entire range
between oxic and strongly euxinic end members. For example,
as recently shown, ferruginous conditions can imprint greater
isotope fractionation between sediments and the overlying bot-
tom waters (Δ98MoBW−sed= 0.6–2 ‰; Hutchings et al., 2020). If
we adjust a relatively larger factor (1.5 ‰) for the intermediate
sink, the heavy δ98Mo of the Gaoyuzhuang Formation can be
reconciled with a line almost overlapping the Aox−Ainter axis,
which indicates either substantial oxygenated or mildly reducing
water masses (Fig. 4). In the intermediate redox environments,
Mo might be efficiently scavenged by organic matter, Fe oxides,
or FeS colloids (Swanner et al., 2020), thus in agreementwith low
seawater Mo concentrations as noted above.

Implications of Dynamic Ocean Redox

A growing body of ecological and geochemical evidence hints at
a dynamic and patchy redox landscape for the Mesoproterozoic
oceans (Zhang et al., 2018; Shang et al., 2019). The Mo isotope
results presented here are consistent with this idea, with decided
intervals indicating expanded oxygenated and/or mildly reduc-
ing waters relative to a baseline of more strongly euxinic condi-
tions. Moreover, bootstrap resampled means of δ98Mo from the
Mesoproterozoic exhibit greater dispersion compared with the
Phanerozoic (Supplementary Information). The recognition of
redox oscillations raises critical questions about possible rela-
tionships to biological innovation. In fact, the heavy δ98Mo val-
ues of the Gaoyuzhuang Formation are concurrent with body
fossil evidence for macroscopic multicellular eukaryotes that
lived near the storm wave base (Zhu et al., 2016). If such
δ98Mo signatures were associated with ocean oxygenation and
increasing atmospheric oxygen levels, then multicellular eukar-
yotes may have evolved and expanded into a permissive chemi-
cal context. Whether subsequent expansions of marine anoxic

conditions have provided a hindrance to further eukaryotic evo-
lution depends on the baseline oxygenation of the Mesopro-
terozoic oceans, an issue that is still unresolved. Nevertheless,
future analyses of larger sample sets promise new insights into
the interaction between ocean redox and bio-diversification dur-
ing the Mesoproterozoic Era.
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Methods 
 
Elemental and TOC measurements 
 

Major and trace elements were determined at the Analytical Laboratory of Beijing Research Institute of Uranium 
Geology, China National Nuclear Corporation, after methods of Zhang et al. (2015). Briefly, major elements were 
determined using a Philips PW2400 X-ray fluorescence spectrometer (XRF), while trace elements were obtained on 
an ELEMENT XR inductively coupled plasma mass spectrometer (ICP-MS) after rock powders were subjected to acid 
digestion. The resulting relative standard deviation (RSD) was <1.5 %. 

Samples for TOC measurement were de-carbonated and combusted in a LECO CS-230HC carbon/sulfur analyser 
at the Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation. The RSD of TOC was 
<1 %. 
 
Iron speciation 
 

Iron speciation technique distinguishes four different Fe pools: carbonate Fe (Fecarb), ferric oxide (Feox), 
magnetite (Femag), and pyrite (Fepy). The former three species were sequentially extracted with acetate, dithionite, and 
oxalate (Poulton and Canfield, 2005), and then quantified with a SHIMADZU AA-7000 atomic adsorption 
spectrophotometer (AAS). Pyrite was extracted by Cr reduction, trapped as Ag2S, with concentrations calculated 
gravimetrically (Canfield et al., 1986). Replicate extractions of PACS-2 and in-house standards indicated analytical 
uncertainty of <5 %. These experiments were conducted at the University of Southern Denmark. The sum of the four 
reactive Fe phases gives the total concentration of highly reactive Fe (FeHR). 
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Molybdenum isotope analysis 
 

Molybdenum isotope purification and analyses were completed at the State Key Laboratory of Ore Deposit 
Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, employing process outlined by Wen et al. 
(2010, 2011). Depending on Mo content, adequate amounts of 100Mo–97Mo double spike were added to each sample. 
An improved anion and column procedure was used to separate Mo (Zhang et al., 2009). Isotope ratios were measured 
on a Neptune Plus multi-collector ICP-MS (MC-ICP-MS). Our δ98Mo values are presented relative to the NIST SRM 
3134 standard set to 0.25 ‰ (Nägler et al., 2014): 
 

δ98Mo = (98/95Mosample/(98/95MoNIST-3134 × 0.99975) − 1) × 1000                                                               (S-1) 
 

Repeated evaluations of a pure NIST 3134 Mo solution and a mixture of NIST SRM 3134 and 100Mo–97Mo 
double spike (1:1) yielded reproducibilities of 0.09 ‰ and 0.06 ‰ (2 s.d.), respectively. Two artificially fractionated 
Mo solutions (SC2 and SC3) of Sigma-Aldrich Mo (lot 207306) gave average δ98Mo values of 1.59 ± 0.09 ‰ (2 s.d., 
n = 12) and −1.68 ± 0.06 ‰ (n = 10), respectively, in line with the recommended values of 1.67 ‰ and −1.63 ‰ (Wen 
et al., 2010). Analyses of the the USGS basalt standard powder (BCR-2) generated mean δ98Mo of 0.22 ± 0.09 ‰ (n = 
12), consistent with the reported value of 0.21 ‰ by Skierszkan et al. (2015). The results corrected by the double-
spike method and the standard sample bracketing method agreed well with each other, and the external reproducibility 
was better than 0.1 ‰ for δ98Mo. 
 
Mass balance model 
 

At steady state, the oceanic Mo isotope budget can be described as: 
 

Fin × δin = Fox × δox + Fred × δred + Feux × δeux                                                                                           (S-2) 
 
where the Mo outflux from seawater is determined by three redox settings: an oxic sink (ox), a euxinic sink (eux), and 
an intermediate reducing sink (inter). Fi and δi represent the Mo flux and isotope composition of each component (i). 

The removal fluxes of redox sinks are defined as: 
 

Fi = S × Ai × bi                                                                                                                                         (S-3) 
Aox + Ared + Aeux = 1                                                                                                                                (S-4) 
bi = k × bi-today                                                                                                                                          (S-5) 
k = [Mo]t/[Mo]today                                                                                                                                  (S-6) 

 
where S is the total seafloor area, Ai is the areal proportion of the sink, k is a reaction coefficient that relates burial 
efficiency (bi) to oceanic Mo concentration ([Mo]t) and the modern average burial rate (bi-today). Since changes in [Mo]t 
will change bi in a proportional manner, the reaction coefficient k will not affect the calculation. 

The Mo isotope compositions of the three redox sinks can be expressed as: 
 

δi = δSW + Δi                                                                                                                                             (S-7) 
 
where δSW is the Mo isotopes of contemporaneous seawater and Δi represents the isotope fractionation associated with 
Mo removal into each redox sink. Combining the above equations, the seawater δ98Mo in response to varying Mo 
sinks can be obtained. The parameters used in this model can be found in Scott et al. (2008). 
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Supplementary Tables 
 
 
 
Table S-1	 Geochemical data of the Gaoyuzhuang Formation (Member III). 
 
The data table is available for download (Excel file) at https://www.geochemicalperspectivesletters.org/article2118. 

 
 
 
Table S-2	 Geochemical data of the Hongshuizhuang Formation. 
 
The data table is available for download (Excel file) at https://www.geochemicalperspectivesletters.org/article2118. 

 
 
 
Table S-3	 Geochemical data of the Shennongjia Group. 
 
The data table is available for download (Excel file) at https://www.geochemicalperspectivesletters.org/article2118. 

 
 
 
Table S-4	 Compilation of black shale Mo isotopes through geological time. 
 
The data table is available for download (Excel file) at https://www.geochemicalperspectivesletters.org/article2118. 
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Supplementary Figures 
 
 
 

 
 

Figure S-1 Sedimentological observations of the studied units. (a) Core photo of organic-rich calcareous shales 
from the Gaoyuzhuang Formation (Member III), dip-corrected depth 167.8–169.7 m. (b) Core photo of the 
Hongshuizhuang shales, dip-corrected depth 405.8–409.8 m. (c) Outcrop of black shales from the Taizi Formation. (d) 
Thin section photomicrograph of sample from the Gaoyuzhuang Formation. (e–f) Representative backscattered 
electron images of the Gaoyuzhuang samples, showing the discrete distribution of pyrites. 
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Figure S-2 Frequency distributions of bootstrap resampled δ98Mo mean values (10,000 iterations) for the 
Paleoproterozoic, Mesoproterozoic, Neoproterozoic, and Phanerozoic samples with δ98Mo > 0.3 ‰ (the continental 
crust composition; Voegelin et al., 2014; Greaney et al., 2020). 
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Figure S-3 Geochemical profiles of the Gaoyuzhuang Formation (Member III) at shallow- (Gangou and Jixian) 
and deep-water (this study) sections. The I/(Ca + Mg) ratios and carbonate carbon isotopes of the Gangou section are 
adopted from Shang et al. (2019). The Ce/Ce* values of the Jixian section are from Zhang et al. (2018). Ce/Ce* = 
CeN/(PrN × PrN/NdN) after Lawrence et al. (2006). The subscript “N” denotes normalization against Post-Archaean 
Average Shale (Taylor and McLennan, 1985). 
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