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Nitrogen is essential to life, and yet is also the most depleted element in the Earth
relative to gas-rich chondrites. A key expression of Earth’s N depletion is its elevated
sulfur-nitrogen (S/N) ratio. Primordial stratification into a core, mantle, and atmosphere
is the largest mass transfer process that terrestrial planets experience, but the data
required to evaluate how S/N ratios respond to primordial stratification of Earth-sized
planets do not exist. We report new metal-silicate partitioning experiments on N up to
26 GPa and 3437 K. Our data indicate that nitrogen becomes more siderophile with
increasing pressure and less siderophile with increasing carbon and nickel in the metal
phase. We apply our new experiments with literature data for S partitioning to a core
formation-primordial atmosphere degassing model. Our model demonstrates that the
S/N ratio of the observable Earth can be set during primordial stratification under
the same extreme P-T conditions that satisfy refractory siderophile element budgets
while also yielding a bulk planet with S contents near that estimated from Earth’s
volatility trend.
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Introduction

Nitrogen is the most depleted element in the observable Earth
when compared to CI chondrites, materials that most faithfully
record the bulk composition of the solar system (observable
Earth is the sum of the atmosphere, oceans, crust, and mantle)
(e.g., Marty, 2012; Halliday, 2013). The depletion of N is a fun-
damental expression of the integrated processes that determine
the volatile budget of planets (Fig. 1).

There are many early acting processes that can deplete
nitrogen and other volatile elements, either in a bulk planet or
its observable reservoirs. Chondrites have various volatile element
patterns that may reflect formation in regions of the Solar System
with fractionated volatiles or the operation of incomplete conden-
sation/evaporation reactions (Bergin et al., 2015). With accretion
anddifferentiation, terrestrial bodies formatmospheres, and these
atmospheres can be lost (Tucker and Mukhopadhyay, 2014;
Schlichting et al., 2015). Core formation occurs in parallel to plan-
etary accretion, and because nitrogen can display both siderophile
and lithophile behaviour, the effect of core formation on the ap-
parent nitrogen depletion in Earth remains uncertain (Roskosz
et al., 2013; Kadik et al., 2015; Li et al., 2016; Dalou et al., 2017;
Grewal et al., 2019a,b; Speelmanns et al., 2019).

The role of pressure and temperature on core formation
chemistry become larger for larger planetary bodies, as indi-
cated by the refractory siderophile element concentrations
observed for Earth, Mars, and Vesta (Righter and Drake,
1996). Studies agree that increasing temperature makes nitro-
gen less siderophile (Grewal et al., 2019a; Speelmanns et al.,
2019). Extrapolating the temperature effect on metal-silicate
partition coefficients for nitrogen (DN

m=s = ½XN
metal�=½XN

silicate�,
atomic) to the average core formation temperature for Earth
implies lithophile behaviour (e.g., Speelmanns et al., 2019). In
the absence of a large effect of pressure, core formation would
apparently have little ability to modify the observable budget of
nitrogen during the accretion of larger rocky worlds, such
as Earth.

Previously published high pressure experiments suggest
that pressure favours N incorporation into cores (Roskosz et al.,
2013, Grewal et al., 2019a); however, the pressure effect cannot
be confidently resolved to be different from zero (Grewal et al.,
2019a). Towards this end, we report DN

m=s values from experi-
ments conducted up to 26 GPa and 3437 K, using a laser heated
diamond-anvil cell (LH-DAC). We supplement our LH-DAC
data, with a systematic series of piston cylinder experiments to
enable a robust parameterisation.
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Methods

Weconducted lower P-T partitioning experiments (1773–2413K,
0.95–2.38 GPa) using a piston cylinder (PC) and higher P-T
experiments (3046–3437 K, 23.2–25.6 GPa) using a LH-DAC
(Tables 1, S-1). Experimental fO2 conditions ranged from ΔIW
−6.6 to ΔIW−1.0 (log unit deviations from the iron-wüstite
buffer). We quantified the composition of reacted metal-silicate
pairs using field emission electronmicroprobe analysis (Table 1).
An example backscatter image is provided in Figure S-1, along
with a typical time-temperature path for LH-DAC experiments.
We also compare major element partitioning data of LH-
DACexperiments to literature data in Figure S-2 as an evaluation
of data quality. Table S-2 reports starting materials composi-
tions. Further details on methods are provided in the
Supplementary Information.

Results

We completed independent series of experiments to quantify the
P-T-X controls on DN

m=s values (Fig. 2, Table 1). Individual
series correlations indicate DN

m=s values depend strongly on
fO2 (R2= 0.99, p value= 0.005, n= 4), temperature (R2= 0.97,
p value= 0.001, n= 6), and pressure (R2= 0.98, p value< 0.001,
n= 9) over other conditions relevant tomagma oceans (Fig. 2a,d),
whereas XC

metal, X
Ni
metal, X

S
metal, and the ionic porosity of silicate

liquid have significant (p values< 0.05) but minor effects
(Figs. 2b,c, S-4, S-5). Our fO2 and temperature findings accord
with previous work (Dalou et al., 2017; Grewal et al., 2019a;
Speelmanns et al., 2019). Our lower pressure experiments indicate
that N-C interactions in Fe alloy make both elements less sidero-
phile and yield an epsilon value (εNC ) of 7.6 ± 1.4 (R2= 0.90,
p value= 0.004, n= 6; Fig. S-4), qualitatively consistent with
the Steelmaking Data Sourcebook (1988) and DN

m=s values col-
lected under C-free conditions (Grewal et al., 2021). Our ε value
calculations follow the approach of Ma (2001).

Our LH-DAC experiments consistently demonstrated
siderophile behaviour (Fig. 2d) despite their high temperature,
and this requires a large, positive pressure effect. These high
P-T experiments contain C and Ni, and were relatively oxidising.
Quantifying the pressure effect therefore requires simultaneous
consideration of these other parameters, which is enabled by our
PC experiments (Eq. 1, see below). Our determination of a

positive effect of pressure is consistent with previous work,
but the larger range of P we investigated results in more precise
determination of the P-T coefficients in Equations 1 and 2 (c.f.,
Roskosz et al., 2013, Grewal et al., 2019a).

To parameterise our data, we first recalculate experiments
to a carbon-free baseline using our newly derived εNC value. We
then conduct an equal weight, least squares regression on
parameters identified as significant in their individual series
(1/T, P/T, XεNi

metal, X
εS
metal, and ΔIW). Our approach yields the fol-

lowing expression (R2= 0.95, p value< 0.001, n= 22; Fig. 2e):

logðDN,C−free
m=s Þ = 6172 ± 9541=T þ 222 ± 33 P=T

þ 5.08 ± 1.42XεNi
metal þ 1.52 ± 0.72XεS

metal þ 0.59

± 0.04 ΔIW − 0.55 ± 0.48 − logðγFemetalÞ Eq. 1

or if the effect of carbon is included in the parameterisation

logðDN
m=sÞ = 6172 ± 9541=T þ 222 ± 33 P=T þ 5.08

± 1.42XεNi
metal þ 1.52 ± 0.72XεS

metal

þ 7.61 ± 1.41XεC
metal þ 0.59 ± 0.04ΔIW

− 0.55 ± 0.48 − logðγFemetalÞ Eq. 2

Uncertainties are reported as 1σ. Note that XεNi
metal, X

εS
metal, and

XεC
metal refer to the expanded concentration expression associated

with the ε notation of Ma (2001), and that positive coefficients
indicate a reduction in the DN

m=s value. Application of Equation
1 to amantle liquidus geotherm atΔIW−2 indicates amonotonic
increase in DN

m=s with depth (Fig. 2f).

We parameterise our data alone because we completed
systematic series of experiments to isolate specific effects on
partitioning. Inclusion of all published data is accompanied by
a large number of free parameters, and prevents resolution of
N, S and C effects that are clearly observable in our results
(Figs. 2, S-4). Predictions of Equation 1 are compared to literature
data in Figures 2e, S-6. Additional details regarding this regres-
sion are provided in the Supplementary Information. The covari-
ance matrix for Equation 1 is reported in Table S-3. We also
report our fitting of literature data with the effects identified
as significant here as Equation S-7.

Modelling N Distribution throughout
Earth

Having established that pressure strongly modulates DN
m=s

values, we now calculate the equilibrium distribution of N and
S between cores, magma oceans, and atmospheres for a range
of plausible stratification conditions. We include S because
multiple high pressure studies show agreement and now
constrain its metal-silicate partitioning up to extreme P-T condi-
tions. Our parameterisation of DS

m=s values is applied here and is
detailed in the Supplementary Information (Fig. S-8).

Mass balance is used to solve for the equilibrium distribu-
tion of N and S as required by partitioning and magma solubility
constraints (Eq. 1; Libourel et al., 2003). Themantle is assumed to
be completely molten, and the mass fraction of the core is 0.325.
Uncertainties are evaluated by varying DN

m=s and DS
m=s according

to their covariance matrices and iterating the mass balance
model. No S is assumed to be present in the atmosphere given
its relatively high solubility inmagma.All scenarios assumea bulk
planet S/N ratio set by enstatite chondrite (85) and that the
magma ocean contains 225 ± 25 ppm S (Hirschmann, 2016).
We focus on enstatite chondrites because their average S/N ratio

H C S N
-4

-3

-2

lo
g(

O
E

/C
I)

Figure 1 Concentrations of volatile elements (H, C, S, and N) in
Earth’s observable reservoirs normalised to CI chondrites. Nitrogen
appears depleted in Earth compared to other volatiles. Data are
from Hirschmann (2016) and Wasson and Kallemeyn (1988).
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is intermediate between gas-rich (29; CI and CM) and ordinary
chondrites (404;Wasson andKallemeyn, 1988).Models that con-
sider S/N ratios for other groups of chondrites are presented in
the Supplementary Information (Figs. S-9, S-10).

Our first goal is to quantify how the S/N ratio of observable
Earth (S/NOE, 82 ± 29, dotted lines in Fig. 3a,c) varies in response
to differentiation conditions. We consider models with core for-
mation fO2 ofΔIW−2 while varying core formation pressure and
atmospheric fO2 (Fig. 3). We focus on ΔIW−2 because the FeO
content of Earth implies an average fO2 for core formation near

this value. Pressures of metal-silicate equilibration range up to
60 GPa, an upper limit in the single stage framework for Earth
(e.g., Fischer et al., 2015). Our model takes a single stage
approach, and while accretion is a multi-step process, single
stage calculations capture average P-T-X conditions that can
be readily compared between elements (Siebert et al., 2011).
Atmospheric fO2 varies in our model between ΔIW−3 and
ΔIWþ3. Atmospheric fO2 conditions are a free parameter in
light of evidence for the depth dependence of the Feþ3/Fetot ratio
of magma in equilibrium with iron (Zhang et al., 2017;
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Armstrong et al., 2019; Deng et al., 2020) and the temperature
dependence of Feþ3/Fetot for any fO2 (Sossi et al., 2020).

Our models demonstrate the strong sensitivity of S/NOE

ratios to core formation pressure; at low pressure (<10 GPa),
S/NOR ratios are low, but with increasing pressure, S/NOE ratios
rise as S becomes less siderophile and N becomes more sidero-
phile. The rise is such that core formation near 30 GPa results in
S/NOE ratios that match Earth for more reducing atmospheres.
More oxidising atmospheres require higher pressure core forma-
tion to satisfy Earth’s S/NOE ratio, as more N remains in the
atmosphere, unable to partition into the core (Fig. 3a,b).

It is possible that the atmosphere is partially lost during
accretion, leading to preferential depletion of N relative to S.
We model this possibility as the end member of the magma
ocean being the only contributor of N and S to later-forming
observable reservoirs (Fig. 3c,d). In these cases S/NOE,MO (S/N
ratio of the magma ocean) also matches Earth near 30 GPa,
and model results are relatively insensitive to atmospheric fO2.
Cases of intermediate atmospheric loss plot between the two
end members for atmospheric contribution considered here
(c.f., Fig. 3a–d).

Taken together, ourmodels demonstrate that higher pres-
sure core formation scenarios can satisfy the S/NOE ratio of
Earth, assuming a bulk planet S/N ratio similar to enstatite chon-
drite. Bulk planet S/N ratios closer to gas-rich chondrites (low
S/N) require even higher core formation pressures, while bulk
planet S/N ratios closer to ordinary chondrites (high S/N) require
lower pressure to satisfy the S/NOE ratio constraint (Figs. S-9,
S-10). This all serves to highlight the importance of core forma-
tion pressure for modulating planetary volatile budgets.

It is significant that higher pressure core formation
(>30 GPa) and a core-mantle fO2 of ΔIW−2 can produce
S/NOE ratios equal to Earth because these are the same differen-
tiation conditions implied by moderately siderophile element
and FeO concentrations in the observable Earth in a single
stage framework (e.g., Siebert et al., 2011; Fischer et al., 2015).
Importantly, higher pressure core formation also yields a bulk
planet with 6650–2050 ppm S (30–60 GPa) (Fig. 3e), and these
values compare favourably with estimates of 5600 ppmS for bulk
Earth based on the volatility trend (Dreibus and Palme, 1996).
The multiple successes of higher pressure models for explaining
Earth’s volatile budget are important because they suggest that
volatiles are modulated by the same core formation events that
modulate refractory elements. This suggestion contrasts with
previous hypotheses that smaller, volatile-rich bodies preferen-
tially contributed to Earth’s volatile budget (e.g., Grewal et al.,
2019b), decoupling the accretion of life-enabling elements from
refractory elements.

It is well established within the Solar System that plan-
etary body size correlates with average core formation pressures
(Righter and Drake, 1996), and our work therefore predicts
a direct relationship between planet size and its distribution of
volatiles. This link should enable more precise evaluations of
exoplanet habitability, worlds for which size remains a central
constraint on their geologic evolution.
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