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Post-collisional highly potassic magmatism in large orogenic belts has been taken as
evidence for recycling of continent-derived K-rich sediments within the orogenic
lithospheric mantle. Potassium isotopes may provide important insights into the ori-
gins of Kin these magmas, since subducting sediments exhibit much more variable K
isotopic compositions relative to the mantle. Here we report high precision K isotope
data for 41 representative potassic and ultra-potassic volcanic rocks from the whole
Alpine-Himalayan orogenic belt. §*'Kyyst srmzia1a Of these samples vary from
—1.55 %o to —0.32 %o, comparable to the range of global subducting sediments
but significantly exceeding the range of pristine mantle defined by oceanic basalts

(=0.42 £ 0.08 %0). Monte Carlo simulation suggests this large K isotopic range can
be reproduced by recycling of up to 5 % isotopically heterogeneous sediments into the depleted mantle. Our results highlight
K isotopes as a potential tracer of recycled sediments in the mantle.
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¥ Introduction

Post-collisional potassic and ultra-potassic volcanic and plutonic
rocks contain up to ~10 wt. % K,O and are one of the most
distinctive magmatic types that frequently occurred in global
orogenic belts at least since the late Archean (e.g., Couzinié et al.,
2016). Their derivation from the mantle is evident from their high
MgO contents (>6 wt. %) and Mg# (>0.6), highly forsteritic
(Fogs_o5) olivine phenocrysts, and the occurrence of mantle xen-
oliths or xenocrysts entrained by these lavas (e.g., Foley ef al.,
1987; Prelevi¢ et al., 2013). Despite this, direct partial melting
of mantle peridotite is unlikely to generate melts with >2 wt. %
KO (e.g, Walter, 1998). These highly potassic lavas are
usually enriched in incompatible trace elements, with extreme
radiogenic isotopic compositions and trace element patterns
resembling those of subducting sediments (e.g., Foley et al,
1987; Williams et al., 2004; Prelevic et al., 2008; Avanzinelli et al.,
2009; Conticelli et al., 2009; Zhao et al., 2009; Couzinié et al.,
2016). These features indicate that the recycling of continent-
derived sediments into their mantle sources contributes to the
peculiar K enrichment in these lavas. However, correlated rela-
tionships between K enrichment and common indices of sedi-
ment contribution in highly potassic lavas such as Th/La,
Sm/La, Th/Nb, Hf/Sm and radiogenic isotopes (e.g., Sr, Nd,
Pb, and Os) are rarely observed (Tommasini et al, 2011;
Prelevic et al., 2013). This decoupled behaviour might reflect that
(1) the budget of Th, Nb, Hf and REE in sediments is dominated
by accessory minerals (e.g., epidote, rutile and zircon) barely
accommodating K, and (2) radiogenic isotopic compositions
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depend on age and time-integrated parent/daughter ratio, unre-
lated to K abundance in sediments.

Recent developments in high precision K isotopic analysis
(<0.06 %o) revealed large K isotopic variation (~1.3 %o) in sedi-
ments, which has been ascribed to low temperature processes
such as chemical weathering or diagenesis (Li ef al., 2019;
Chen et al., 2020; Hu et al., 2020; Huang et al., 2020; Santiago
Ramos et al., 2020; Teng et al., 2020). By contrast, high temper-
ature magmatic processes do not significantly fractionate K iso-
topes (Tuller-Ross et al, 2019a,b; Hu et al, 2021a). Hence,
potassium isotopes can potentially be used to trace sedimentary
K in mantle-derived melts, which has been recently applied to
explain the K isotopic variations in intracontinental basalts from
northeast China (Sun et al., 2020) and arc lavas from Lesser
Antilles (Hu et al., 2021b).

Here we report the first comprehensive K isotope dataset
for representative post-collisional K-rich lavas from eight
regions within the Cenozoic Alpine-Himalayan orogenic belt
(AHOB; Fig. 1a). These samples are well characterised for their
petrology, mineralogy, major, trace element, and radiogenic iso-
tope geochemistry (Prelevi¢ et al., 2005, 2008, 2012, 2015; Zhao
et al., 2009; S.-A. Liu et al., 2020). They cover major types of
K-rich volcanic rocks, ranging from lamproite, shoshonite,
high-K calc-alkaline basalt-andesite to leucite-bearing silica
undersaturated rock (leucitite, melilite, and ugandite), and span
a wide range of K,O contents from 3.6 to 11.2 wt. % and
K,O/Na,O from 1.1 to 10.4, of which the majority are ultra-
potassic (Fig. 1b,c). All samples have trace element patterns
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Figure 1 (a) Topographic map (http://www.geomapapp.org / CC BY) showing the region of Alpine-Himalayan orogenic belt (bounded by
yellow dashed curves). Numbers in circles refer to the locations of K-rich volcanic rocks investigated in this study. (b) KO vs. SiO, diagram for
classification of volcanic rocks (Peccerillo and Taylor, 1976). (c) K,0/Na,O vs. MgO. The ultra-potassic field is from Foley et al. (1987). (d) enq vs.
87Sr/B8Sr. eng and 87Sr/28Sr were calculated at the eruption age. The average global subducting sediments (GLOSS) is from Plank (2014). Major

element and Sr-Nd isotope data as well as corresponding references are provided in Table S-1.

resembling upper crustal materials (Fig. S-1) and display a range
of Sr and Nd isotopic ratios from OIB-like to continental crust-
like (Fig. 1d). Our study finds large K isotopic variation in these
K-rich rocks, comparable to subducting sediments, supporting
recycling of sediments into the mantle wedge beneath accretion-
ary orogens.

84K of all samples vary from —1.55 %o to —0.32 %o, mimicking
the range of global subducting sediments (§*'K=-1.30 %o to
—0.02 %o; Hu et al, 2020) (Fig. 2). Two lamproites from
Macedonia and Turkey have the lowest §*'K (~1.55 £ 0.05 %o
and —0.80 +0.05 %o) reported for mantle-derived lavas. §*'K
of the other 39 samples range from —0.62+0.05 %o to
—0.32£0.05 %o, which greatly exceeds our analytical precision
(<0.06 %o). To date, high precision 8*'K value of the mantle is
not well constrained due to the large analytical uncertainties
of previous studies (Tuller-Ross et al., 2019a). Nonetheless,
the most recent study suggested an average mantle §*'K of
—0.42 £0.08 %o (2 s.d.; Hu et al., 2021a) and significant numbers
of lamproites and shoshonites investigated in this study have
resolvably lower §*'K compared to this mantle value.

Potassium Isotope Systematics of K-rich
Volcanic Rocks

Post-eruption alteration processes cannot account for the
large K isotopic variation in our samples since correlation
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Figure 2 Comparison of §*'K between global subducting sedi-
ments (Hu et al., 2020) and K-rich volcanic rocks from the AHOB
(this study). The mantle 5*'K value (~0.42 + 0.08 %o) is from Hu et al.
(2021a).

between §4IK and loss on ignition (LOJ) is lacking and the iso-
topically lightest samples have very low LOI (Fig. S-2).
Potassium isotope fractionation during partial melting of the
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Figure 3  (a) KO vs. Mg#. The vectors qualitatively indicate evo-
lution of melts during fractional crystallisation of olivine (Ol), clino-
pyroxene (Cpx) and phlogopite (Phl). The yellow bar refers to the
putative Mg# range (0.63-0.85) of primitive magmas, which was
calculated based on the forsterite contents (85-95 %) of olivine
phenocrysts in K-rich volcanic rocks from the AHOB (Prelevic et al.,
2013) and the experimentally determined olivine-liquid Fe-Mg

exchange coefficient (Kg,'é'eif‘,f,il‘; =0.3; Roeder and Emslie, 1970).
(b) 5*'K vs. Mg#. The mantle 5*'K (—0.42 + 0.08 %o) is from Hu et al.
(2021a).

mantle and differentiation of mafic magmas is limited and only
highly differentiated, Mg-depleted melts have slightly lower
8*K than primitive melts (Tuller-Ross et al., 2019b; Hu et al,
2021a). The absence of correlation between §*'K and indices
of differentiation such as Mg#, SiO, and K,O in our samples fur-
ther confirms this (Figs. 3b, S-3). More importantly, low §*!K val-
ues are only observed in samples with Mg# > 0.7 (Fig. 3b), which
have been commonly considered as primary or near-primary
melts that suffered limited differentiation and crustal contamina-
tion (Prelevic et al., 2013). Therefore, K isotopic variation in these
K-rich lavas most likely reflects source heterogeneity.

Potassium Isotope Heterogeneity in
Mantle Sources

Altered oceanic crust (AOC) and sediments dominate the K
budget in subducting slabs, which may lead to K isotope hetero-
geneity in the mantle (Hu et al., 2020). §*'K of the AOC range
from —1.07 %o to 4-0.01 %o, and hence incorporation of recycled
AOC in the mantle can potentially explain the heterogeneous
8%K in our samples (Hu et al., 2020; Santiago Ramos et al.,
2020). However, the AOC is characterised by MORB-like

positive eng (Staudigel ef al., 1995), inconsistent with the nega-
tive eng of the K-rich volcanic rocks (Fig. 1d). Fluids released
from subducting oceanic mafic crust were inferred to have higher
841K (0.13 %o to 1.37 %o) than the mantle (H. Liu et al., 2020), and
hence cannot result in the low §*)K in our samples. Subducting
sediments characterised by variable and negative eng are most
likely to be the K source (Fig. 4). Limited K isotope fractionation
in subducting sediments occurs during prograde metamorphic
dehydration (Wang et al., 2021). Therefore, K isotopic signatures
of subducting sediments could be transferred to the mantle
source of K-rich lavas.

Heavy K isotopes were preferentially released into hydro-
sphere during continental weathering, leaving the residues
enriched in light K isotopes (Li et al., 2019; Chen et al., 2020;
Teng et al, 2020). Terrigenous sediments that underwent
moderate to intensive weathering display a range of ‘'K from
—0.70 %o to —0.35 %o (Hu et al., 2020), covering §*'K of all
but two of our samples. Incorporation of K into authigenic clay
minerals during diagenesis strongly favours light K isotopes,
producing sediments with §*'K down to —1.31 %o (Hu et al,
2020), which approaches the lowest value of our samples.
Therefore, recycled authigenic clay-rich sediments, which are
difficult to identify by trace elements and radiogenic isotopes,
likely contribute to K in the two lamproites with extremely
low 8*IK. The scarcity of such samples is also consistent with
the low fractions of isotopically light clay-rich sediments in
global subducting sediments (Fig. 2). In addition, these low
8*K lamproites mainly occur in the eastern Mediterranean prov-
inces (Serbia, Macedonia, and Turkey) and are characterised by
less radiogenic Sr and unradiogenic Nd isotopic signatures com-
pared to the western Mediterranean counterparts (Spain and
Italy), which reflects involvement of sediments with different
age and provenance in their sources (Prelevi¢ et al., 2008). The
distinct K isotopic feature between samples from these two prov-
inces further indicates regional heterogeneity in §*!K of recycled
sediments.

A Monte Carlo mixing model between the DMM
(depleted MORB mantle) and subducted sediments shows that
the addition of up to 5 % sediment in the mantle can almost
reproduce the full range of §*!K in these K-rich volcanic rocks
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Figure4 5K vs. eng (calculated back at the eruption or depositio-
nal age). The *'K and enq of global subducting sediments are from
Hu et al. (2020) and Plank (2014). 5*'K of the DMM is assumed to be
the average mantle value and eyg of the DMM is from Workman
and Hart (2005). Small circles with different colours represent ran-
dom mixing of subducted sediments with the DMM at variable pro-
portions from a Monte Carlo simulation, of which the details are
provided in the Supplementary Information.
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because of the much higher K content in sediments than in the
mantle (Fig. 4). The actual amount of sediment may be much
lower considering that sediment melts, which are more enriched
in incompatible elements than bulk sediments, were most likely
added into the mantle. The sediment fraction derived above is
significantly lower than that used in partial melting experiments
on a mixture of peridotite and sediment or sediment-derived
melt to generate ultra-potassic melts (>25 %; Mallik et al,
2015; Forster et al., 2020). Therefore, if the experimental amount
of sediment is employed in our model, §*'K of ultra-potassic
melts will completely inherit those of recycled sediments.
Overall, recycling of a small amount of isotopically anomalous
sediments into the mantle can significantly modify §*'K of the
mantle. This process can adequately explain the large variations
of 8*'K and especially low §*'K that are often observed in isotopi-
cally “enriched” (i.e. low eng) mantle-derived melts erupted in
various tectonic settings (Fig. 4). Therefore, K isotopes may
become one of the most sensitive indicators for the presence
of sediments in the mantle.
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