Sulfur and mercury MIF suggest volcanic contributions to Earth’s atmosphere at 2.7 Ga

A.L. Zerkle1*, M.W. Claire1, T. Di Rocco1-2, N.V. Grassineau3, E.G. Nisbet3, R. Sun4, R. Yin4*

Abstract

The Archean eon is associated with large-scale changes in Earth’s geosphere and biosphere, including the onset of plate tectonics and the expansion of oxygenic photosynthesis, although the full impacts of these changes on the atmosphere remain unclear. Here we present coupled records of mass independent fractionation of sulfur (S-MIF) and mercury (Hg-MIF) isotopes from well preserved sediments of the ∼2.7 billion year old (Ga) Manjeri Formation, Belingwe Greenstone Belt, Zimbabwe. These palaeoatmospheric proxies record different trends for S-MIF and odd number Hg-MIF versus even number Hg-MIF, providing novel constraints on atmospheric chemistry during this time. S-MIF and odd number Hg-MIF values are muted in comparison to values preserved in later Archean sediments, representing a combination of enhanced volcanic input and local mixing. Even number Hg-MIF is absent from these sediments, consistent with complete photo-oxidation of gaseous Hg0, which could have been driven by increased halogen emissions from arc volcanism. When considered within a global geo-dynamic context, these MIF data suggest an important role for subduction zone-related volcanism associated with early plate tectonics in modulating the ∼2.7 Ga atmosphere.

Introduction

The mid- to late-Archean, between ∼3.2 and 2.5 billion years ago (Gyr), was a time of great transitions in Earth history, including the evolutionary proliferation of cyanobacteria performing oxygenic photosynthesis (Farquhar et al., 2013; Nisbet and Fowler, 2014) and the development of plate tectonics (Hawkesworth et al., 2020). Both of these events would have fundamentally altered Earth’s surface environments and planetary habitability, the former by introducing a strong oxidant, and the latter by modulating fluxes of carbon and other volatile elements between the mantle and the surface (Zerkle, 2016). Although geosphere-biosphere-atmosphere feedbacks would have been essential in driving (and responding to) these critical changes in Earth’s history, geochemical markers that place direct constraints on atmospheric evolution during this time period remain elusive.

Mass independent fractionation of sulfur isotopes (S-MIF) provide vital clues into past atmospheric chemistry. The presence of large magnitude S-MIF in rocks deposited prior to ∼2.43 Ga provides compelling evidence for an oxygen-poor atmosphere in the Archean and early Palaeoproterozoic (Farquhar et al., 2000; Warke et al., 2020). The S-MIF record also displays significant variations in magnitude, sign, and quadruple S isotope systematics (expressed as Δ34S and Δ36S: Eqs. S-2, S-3) that could provide additional constraints on Earth’s reducing atmosphere. In particular, a decrease in the magnitude of S-MIF has been reported in Archean rocks deposited between ∼3.2 and 2.7 Ga (Fig. 1). This “mid-Archean MIF minimum” has been variably attributed to changes in global atmospheric chemistry, which could shield or dampen S-MIF forming reactions (Farquhar et al., 2007; Domagal-Goldman et al., 2008; Kurzweil et al., 2013; Liu et al., 2019), or to dilution or mixing of atmospheric sulfur sources on a local or regional scale (Guy et al., 2012; Thomazo et al., 2013; Marin-Carbone et al., 2014).

MIF of mercury (Hg) isotopes in marine sediments can provide additional constraints on atmospheric chemistry. Mercury undergoes MIF of both odd number isotopes (expressed as Δ199Hg and Δ201Hg: Eq. S-5) and even number isotopes (expressed as Δ200Hg) during Hg transformations between the atmosphere and oceans (Blum et al., 2014). Odd number Hg-MIF is predominantly produced by photo-reduction of aqueous Hg2+, which occurs mainly in the surface ocean but also in rain droplets (Bergquist and Blum, 2007). By contrast, even number Hg-MIF is only produced during gas phase Hg0 photo-oxidation in the atmosphere (Cai and Chen, 2016). In the oceans, MIF-bearing Hg complexes with organic matter and sulfur ligands and is deposited in the sediments. The resulting Hg-MIF signals are robust to post-depositional alteration (Grasby et al., 2016) and can record additional, complementary atmospheric constraints (Zerkle et al., 2020). Here we present coupled records

1. School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, Fife, KY16 9AL, Scotland, UK
2. Current address: Geowissenschaftliches Zentrum, Universität Göttingen, 37077 Göttingen, Germany
3. School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, Fife, KY16 9AL, Scotland, UK
4. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
* Corresponding author (email: az29@st-andrews.ac.uk, yinrunsheng@mail.gyig.ac.cn)
of the Spring Valley (SV) member, through the subtidal Shavi member (preserved in the NERCMAR core) to the deeper water shales of the Jimmy member (preserved in cores A and B).

S-MIF from the Manjeri Fm had $\Delta^{33}S$ values ranging from -1.5 to +3.1‰, with positive $\Delta^{33}S$ values dominating the Jimmy member and negative $\Delta^{33}S$ values dominating the Spring Valley and Shavi members (Fig. 2). These S-MIF values are larger in magnitude than bulk rock $\Delta^{33}S$ values previously reported from ~2.7 Ga (e.g., Thomazo et al., 2013), but still significantly smaller than $\Delta^{33}S$ values preserved in ~2.5 Ga sediments (Fig. 1). Shielding of S-MIF forming reactions by oxygen or organic haze have been proposed to erase or decrease S-MIF (Domagal-Goldman et al., 2008; Kurzweil et al., 2013; Liu et al., 2019), but the persistence of S-MIF in these samples precludes an ozone layer, and the $\Delta^{33}S$-$\Delta^{36}S$ dynamics are inconsistent with haze formation (Fig. 2b) (Zerkle et al., 2012). Modelling studies have shown that higher total volcanic sulfur fluxes can alter sulfur exit channels and decrease S-MIF values (Claire et al., 2014), providing one potential explanation for lower magnitude atmospheric S-MIF.

Local- or basinal-scale mixing of primary atmospheric S sources can further dampen sedimentary S-MIF signals (e.g., Marin-Carbone et al., 2014). Following mass balance, the preservation of S-MIF in ancient sediments requires two or more exit channels for atmospheric sulfur, conventionally considered to be elemental sulfur carrying a positive $\Delta^{33}S$ signature (as seen in the Jimmy member) and sulfate carrying a negative $\Delta^{33}S$ signal (as seen in the SV and Shavi members), although this remains debated (Claire et al., 2014; Harman et al., 2018). In particular, the very small S-MIF in some samples from the Jimmy member (with $\Delta^{33}S < 2$‰) could reflect further muting of primary atmospheric S-MIF values via mixing. Mixing could have been driven by biological processes (e.g., through re-oxidation of reduced S), physical processes (e.g., mixing of Fe-sulfides derived from sulfate reduction with polysulfides to form pyrite), or some combination of both (Fig. 2a). Previous studies indicate that Jimmy member sediments supported an active biogeochemical S cycle in proximity to a redox interface (Yang et al., 2019), consistent with this interpretation.

Mercury isotopes provide new insights into environmental conditions during deposition of the Manjeri strata. δ^{202}Hg values alone are difficult to interpret, since mass dependent fractionation of Hg occurs during all Hg cycling processes (Blum et al., 2014). In contrast, mercury MIF provides clearer constraints on atmospheric Hg cycling, as it mainly occurs during photon-mediated processes with little contribution from biogeochemical cycling, and even number Hg-MIF is produced exclusively in the atmosphere. Odd number Hg-MIF from the Manjeri Fm support two sources of Hg to the sediments, one dominated by positive odd number Hg-MIF, and one dominated by negative odd number Hg-MIF (Fig. 2c). In the modern environment, rain and open marine samples that mainly contain Hg$^{2+}$ species are characterised by positive odd number Hg-MIF (e.g., Štrok et al., 2015), while terrestrial reservoirs and modern coastal sediments that primarily accumulate Hg0 are characterised by negative odd number Hg-MIF (Blum et al., 2014). These Hg-MIF values therefore suggest that the dominant source of Hg to the SV and Shavi members was Hg0 species deposited in a shallow depositional environment, where enhanced terrestrial nutrient input stimulated local primary productivity, driving near shore anoxia. The Jimmy member, on the other hand, was dominated by Hg$^{2+}$ species deposited in a more oligotrophic open ocean environment, adjacent to a deeper water chemocline. This depositional scenario is supported by previously published sedimentology (Hunter et al., 1998) and ocean redox data from these same cores (Yang et al., 2019). Combined S-MIF and Hg-MIF data from well preserved sediments of the ~2.7 Ga Manjeri Formation of the Belingwe Greenstone Belt, Zimbabwe, to determine local versus global controls on MIF records, and to unravel drivers of Archean atmospheric chemistry.

Sulfur and Mercury MIF in the Manjeri Formation

Our samples were collected from three drill cores through the ~2.7 Ga Manjeri Formation (Fm) of the Belingwe Greenstone Belt, Zimbabwe (as detailed in Yang et al., 2019, and SI). This section of the Manjeri Fm (Hunter et al., 1998) records a marine transgression from a basal unconformity and the intertidal facies
Hg-MIF data also indicate that the atmospheric exit channel carrying a negative $\Delta^{33}S$ signal dominated the S pool in shallow, near shore environments, while atmospheric S carrying a positive $\Delta^{33}S$ signal dominated in open ocean environments (Fig. 3).

Similar to S-MIF, Hg-MIF values from the 2.7 Ga Belingwe strata are muted (odd number Hg-MIF) or completely absent (even number Hg-MIF) in comparison to Hg-MIF data from the later Archean (Fig. 1). A decrease in the magnitude of sedimentary Hg-MIF towards values of 0 ‰ is generally attributed to enhanced atmospheric flux of volcanically-derived Hg0 to the sediments, since volcanic Hg0 has $\Delta^{199}Hg$ and $\Delta^{200}Hg$ values of 0 ‰ (Zambardi et al., 2009). Ratios of mercury to TOC in the Manjeri Fm support high volcanic Hg0 inputs to the sediments, particularly in the near shore SV and Shavi members (1274 ± 584 ppb Hg/wt. % TOC; Grasby et al., 2019).

However, volcanic Hg0 input would affect both odd number and even number Hg-MIF similarly, as would any post-depositional mixing processes, so neither of these mechanisms can explain the entirety of our Hg-MIF data.

The complete absence of even number Hg-MIF in these sediments instead requires further alteration of the photo-oxidation processes that uniquely produce $\Delta^{201}Hg$ anomalies. The dominant oxidation pathway for Hg0 in the modern atmosphere is reaction with halogens, such as bromine and chlorine (Dibble et al., 2020), and these reactions have been shown to produce...
even number Hg-MIF (Sun et al., 2016). In the modern Earth system, the largest volcanic source of halogens is from subduction zone–related arc volcanism (Pyle and Mather, 2009). Enhanced volcanic fluxes of SO₂ and halogens into the atmosphere could have driven Hg²⁺ photo-oxidation reactions near to completion, as seen with seasonal atmospheric mercury depletion events that occur in modern polar regions (Carignan and Sonke, 2010), erasing any even number Hg-MIF signal. Halogens could have additionally been supplied from komatiitic volcanism, as indicated by the overlying Zeederbers Fm deposited several million years later (Cameron et al., 1979).

Enhanced global volcanic gas fluxes could have contributed both MIF-free sulfur and mercury to the sediments, diluting the overall magnitudes of sedimentary MIF. In addition, the complete lack of even number Hg-MIF in these sediments suggests a volcanic source rich in halogens, similar to modern arc volcanism. Therefore, enhanced arc volcanism provides the only self-consistent mechanism that can reconcile all three sets of MIF records. Within a global geodynamic context, models of continental crust formation suggest that crustal destruction rates increased dramatically at ~3.0 Ga, inferred to represent the widespread development of subduction zones (Fig. 1) (Dhuime et al., 2018). The increase in crustal destruction rates, coupled with the development and amalgamation of Archean supercontinents, are taken to reflect the onset of plate tectonics as the dominant global regime during this time (Hawkesworth et al., 2020). Our data are consistent with enhanced volatile fluxes from subduction zone arc volcanism at ~2.7 Ga. Following this scenario, the increase in S-MIF and Hg-MIF between 2.7 and 2.5 Ga could be explained by decreased volcanic emissions during the transition to tectonic quiescence in the Palaeoproterozoic (Cawood and Hawkesworth, 2014). As a corollary, the time span of the mid–Archean S-MIF minimum could indicate that volcanic emissions from plate tectonics exerted a fundamental control on atmospheric chemistry from ~3.2 to 2.7 Ga, before biology wrested control in the ensuing ~200 million years (e.g., Kurzweil et al., 2013; Izon et al., 2017).

Acknowledgements

This study received funding from a Natural Environment Research Council Standard Grant NE/M001156/1 (ALZ, EGN), and from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant 678812 to MWO). RS and RW were supported by the Natural Science Foundation of China (41873047).

Editor: Gavin Foster

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2124. © 2021 The Authors. This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www.geochemicalperspectivesletters.org/copyright-and-permissions.

References

