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Estimating Helium (He) concentration and isotope composition of the mantle
requires quantifying He loss during magma degassing. The knowledge of diffusional
He isotope fractionation in silicate melts may be essential to constrain the He loss.
Isotopic mass dependence of He diffusion can be empirically expressed as D3He/
D4He= (4/3)β, where D is the diffusivity of a He isotope. However, no studies have
reported any β values for He in silicate melts due to technical challenges in both
experiments and computations. Here,molecular dynamics simulations based on deep
neural network potentials trained by ab initio data show that β for He in albite melt
decreases from 0.355 ± 0.012 at 3000 K to 0.322 ± 0.019 at 1700 K. β in model basalt
melt takes a smaller value from 0.322 ± 0.025 to 0.274 ± 0.027 over the same temper-

ature range. Based on our results, we suggest using D3He/D4He values of 1.097 ± 0.006 and 1.082 ± 0.008 in natural rhyolite and
basalt melt, respectively, to interpret measured He concentration and isotope composition of natural samples.
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Noble gases are known to be chemically inert, which means that
their compositions were not altered by chemical or biological
processes over the Earth’s history. Only physical processes such
as diffusion, adsorption, or ion implantation may cause signifi-
cant elemental and isotopic fractionations (Moreira, 2013). The
inert behaviour combined with the existence of both radiogenic
and non-radiogenic isotopes for each noble gas provides power-
ful tools for constraining mantle degassing history and identify-
ing long lived heterogeneities within the mantle (Behrens, 2010;
Moreira, 2013; Moreira and Kurz, 2013). However, measured
noble gas isotope ratios in mid-ocean ridge basalts (MORB)
and oceanic island basalts (OIB) are often difficult to interpret
due to possible fractionations that happen in magma degassing
(Moreira and Kurz, 2013).

Magma degassing occurs in a closed or open system. The
changes of noble gas isotope compositions during closed system
degassing are determined by equilibrium isotope fractionation
between noble gases dissolved in the melt and noble gases in
the gas phase. In comparison, magma degassing in an open sys-
tem may be diffusion controlled (Watson, 2017) and diffusion
can fractionate isotopes considerably even at magmatic temper-
atures (e.g., Richter et al., 1999; Watkins et al., 2017). Diffusional
separation of isotopes can be expressed as (Richter et al., 1999):

Di

Dj
=
�
mj

mi

�
β

Eq. 1

where Di and Dj are diffusion coefficients of two isotopes whose
masses are mi and mj and β is a dimensionless empirical param-
eter. The knowledge of β for noble gases in silicate melts is

essential to interpret noble gas isotope ratios. However, no
experiments have studied diffusional fractionation of noble
gas isotopes in high temperature silicate melts. The results from
previous diffusion experiments using silicate glasses (Shelby,
1971; Trull and Kurz, 1999) may not be extrapolated to the cases
in silicate melts, although silicate glasses are widely regarded as
proper structural analogues of silicate melts. The reason is that
the dynamics of silicate networks in high temperaturemelts help
open and close paths for noble gas diffusion, which may play a
key role in determining diffusional isotope fractionation
(Behrens, 2010; Watkins et al., 2017). Additionally, it is known
that the diffusivities of noble gases show non-Arrhenius behav-
iour around the glass transition temperature (Behrens, 2010;
Amalberti et al., 2016), which may imply a change in diffusion
mechanism and thus influence diffusional isotope fractionation.

First principles molecular dynamics (FPMD) simulations
are reliable to calibrate β in liquids (Luo et al., 2020), but the high
computational cost makes them unsuitable to deal with trace
elements (e.g., noble gases and Li). A recently developed tech-
nique called deep potential molecular dynamics (DPMD) simu-
lations (Wang et al., 2018; Zhang et al., 2018), which is based on
potentials trained by deep neural networks using ab initio data
and is orders of magnitude faster than FPMD with comparable
ab initio accuracy, has been successfully applied to predict β for
Li in silicate melts (Luo et al., 2021). Here we perform DPMD
simulations to study diffusional He isotope fractionation in albite
and model basalt melts at 3000, 2200, and 1700 K around zero
pressure. The major technical improvement in this study is
that the deep potential generator (DP-GEN) (Zhang et al.,
2020) is used to achieve a concurrent learning procedure and
to obtain a representative training data set in a rigorous way
(Supplementary Information).
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Albite and model basalt melts (excess Ca to compensate
Fe) are close analogues of natural rhyolite and basalt melts,
respectively. One He atom is added to the albite melt containing
8 NaAlSi3O8 (104 atoms) and the model basalt melt containing
Ca9Mg6Al6Si18O60 (99 atoms), respectively.We conduct the sim-
ulations at 3000 K for 1 nanosecond (ns) with a time step of 0.5
femtosecond (fs) and at 2200 and 1700 K for 4 ns with a time step
of 1.0 fs. Each simulation is repeated five times with different
initial configurations. The accuracy of DPMD simulations is
validated by comparing the predicted energies (Fig. S-1), forces
(Fig. S-2), and radial distribution functions (Fig. S-3) with those
calculated from FPMD simulations. To derive a reliable β from
the linear fitting of logD vs. logM based on Equation 1, we
use two pseudo-isotopes with masses M* = 1 and 2 g/mol, in
addition to the two natural He isotopes (3He and 4He). The self
diffusivities of the four He isotopes are calculated using the
Einstein relation (Einstein, 1956):

DHe = lim
t➝∞

hj r!ðt þ t0Þ − r!ðt0Þj2iHe

6t
Eq. 2

where r!ðtÞ represents the particle trajectories and h : : : iHe
denotes average mean square displacement (MSD) over time
from different time origins t0. The average value over the five
independent simulations and the corresponding confidence
interval (±2 s.e.) on the diffusivities are reported. The finite size
effect on the diffusivities of He isotopes is insignificant within
error after considering the correction relation proposed by Yeh
and Hummer (Yeh and Hummer, 2004).

In Figure 1, linear MSD-time curves indicate that the
diffusion of He isotopes was sampled well. All MSD curves
for the four He isotopes at each condition are clearly separated.
As suggested in previous studies (e.g., Bourg and Sposito, 2007;
Luo et al., 2020), only the first part of MSD curves in the diffu-
sive regime (9–10 picoseconds (ps), 20–40 ps, and 50–100 ps at
3000, 2200, and 1700 K, respectively) is used to approximate
the infinite time limit in Equation 2. We find that He diffuses
much faster in albite than in model basalt melts, consistent
with the trend found in glasses (Behrens, 2010). Calculated
diffusion coefficients of He isotopes display a negative correla-
tion with mass and a positive correlation with temperature

in both albite and model basalt melts (Table S-1, Fig. 2a).
The temperature dependence of diffusivities is fit to the
Arrhenius relation:

Dα = D0α exp
�
−Eα
RT

�
Eq. 3

where α represents a He isotope. The predicted pre-
exponential factor (D0α) and activation energy (Eα) appear to
decrease with increasing isotopic mass of He (Fig. S-4). The
predicted diffusivity for 4He in model basalt melt at 1623 K is
4.81 × 10−9 m2/s, which agrees well with the experimental value
of 5 × 10−9 m2/s in a tholeiitic melt (Lux, 1987) and the compu-
tational result from classical MD in a MORB melt (Guillot and
Sator, 2012), although it is unclear why an experiment reported
a much lower value of 0.28 × 10−9 m2/s in model basalt melt at
1673 K (Amalberti et al., 2018). Eα for 4He in albite and model
basalt melts are 27.9 ± 7.6 and 65.8 ± 2.4 kJ/mol, respectively.
No experiments have reported activation energy for He diffu-
sion in silicate melts. The experimental activation energies for
He diffusion in albite and basalt glasses at much lower temper-
atures (398–673 K) are 31.7 (Shelby and Eagan, 1976) and 83 ±
4 kJ/mol (Kurz and Jenkins, 1981), respectively. The smaller
activation energies predicted by FPMD simulations compared
to experimental results have been extensively reported (Karki
et al., 2018). The very different temperature ranges explored
in simulations and experiments may account for the discrep-
ancy. It is worth stressing that He diffusion in albite melt shows
a small non-Arrhenius behaviour (Fig. 2a).

The linear correlation of logD with logM in Figure 2b is
consistent with the empirical Equation 1 proposed by Richter
et al. (1999). The calculated β in albite melt decreases from
0.355 ± 0.012 at 3000 K to 0.322 ± 0.019 at 1700 K. In compari-
son, β in model basalt melt takes a smaller value from 0.322 ±
0.025 to 0.274 ± 0.027 over the same temperature range. The
smaller β value in model basalt than in albite melt is the same
as that observed in the case of Li, which makes sense as both He
and Li diffuse faster in rhyolitic than in basaltic melt due to
higher ionic porosity of rhyolitic melt. The decreasing trend of
β with temperature in silicate melts around zero pressure has
been reported in the simulations of diffusionalMg and Li isotope
fractionation (Luo et al., 2020, 2021). An assumed linear regres-
sion fit to β vs. T−1 yields relationships: β= (0.397 ± 0.017)

Figure 1 Mean square displacement (MSD) of He isotopes (1He, 2He, 3He, 4He) as a function of time in (a) albite and (b)model basaltmelts at
3000 (solid lines), 2200 (dashed lines), and 1700 K (dotted lines) around zero pressure.
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− (0.012 ± 0.004) × 104/T in albite melt and β= (0.389 ± 0.021)
− (0.019 ± 0.005) × 104/T inmodel basaltmelt. The stronger tem-
perature dependence of β for Li in model basalt than in albite
melt is also observed here for He. Based on the predicted β val-
ues, a drop of temperature by 300K (1700–1400K in basalticmelt
or 1400–1100 K in rhyolitic melt) results in a negligible decrease
(∼0.7 %) of D3He/D4He value. Thus, we suggest that using the
data at 1700 K, D3He/D4He values of 1.082 ± 0.008 in model
basalt melt and 1.097 ± 0.006 in albite melt, are accurate enough
when dealing with diffusional fractionation of He isotopes in
natural silicate melts at shallow depths of the present day Earth.

It has been proposed that β positively correlates with sol-
vent normalised diffusivity (Di/DSi), implying that cations that
are easier to decouple from the silicate matrix exhibit a larger dif-
fusional isotope fractionation (Watkins et al., 2011, 2017). Note

that Luo et al. (2020, 2021) stressed that this positive correlation
only works at a constant or narrowly defined temperature range
as β in silicatemelts is found to decreasewith decreasing temper-
ature while Di/DSi increases. The correlation of β for He with
DHe/DSi at 1700 K broadly follows the previous positive trend
(Fig. 3). The value of DHe/DSi is ∼5525 ± 2378 in albite melt,
much larger than the value of ∼174 ± 37 in model basalt melt.
However, it seems that the overall relationship between β and
Di/DSi becomes less defined even at a narrow temperature range
when data for different elements in different melt systems are
considered (Fig. 3). This could be attributed to different extents
of compositional dependence of both β andDi/DSi.More data are
needed to further explore this issue.

Helium is the fastest diffusing species in natural silicate
melts (except H2 which is easily oxidised) and there is a positive
correlation between diffusivity and β at fixed temperatures. Thus,
it is fair to say that the overall range of β for different elements in
natural silicate melts is ∼0–0.32. The largest β value is given by
He isotope diffusion in rhyolitic melt, which is still much lower

Figure 2 (a) Diffusion coefficients of He isotopes (1He, 2He, 3He, 4He) as a function of temperature in albite andmodel basalt melts around
zero pressure. The experimental data (Lux87) for the diffusivity of He in a tholeiiticmelt is from Lux (1987). (b) Log-log plot of the diffusivities
of He isotopes in albite (alb) and model basalt (bal) melts as a function of isotopic mass at different temperatures around zero pressure.

Figure 3 Relationship of βwith solvent normalised diffusivity (Di/
DSi). Experimental data is from Richter et al. (2003, 2009), Watkins
et al. (2009, 2011), and Holycross et al. (2018). Computational
results of Li at 1800 K are from Luo et al. (2021). All data shown
here are for the relatively narrow temperature range 1623–
1800 K, except one data point from Holycross et al. (2018).

Figure 4 (3He/4He)/(3He/4He)0 as a function of He loss ratio for dif-
ferent β values.
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than the value of 0.5 in the case of ideal gas. Givenmeasured He
isotope ratios of geological samples (rocks, minerals, glasses, or
melt inclusions) that went through diffusive degassing at the
magmatic stage, a smaller β value means that the samples must
have lost more He than previously thought.

For example, reducing an initial 3He/4He ratio by 10 %
requires 60 % gas loss for β equal to 0.5, but 73 % loss for β
of 0.322 in rhyolite melt and 77 % loss for β of 0.274 in basalt
melt (Fig. 4, Supplementary Information). Our reported β values
are useful for quantitatively estimating He loss during magmatic
degassing and trace back He concentration and isotope compo-
sition of magma source region.
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Deep Potential Training 
 
We constructed the deep-learning potential (DP) models for helium-bearing albite and model basalt melt using 
the DP-GEN (Zhang et al., 2020) scheme for the configurational space covering a temperature range 1400-4000 
K and a volume range 1.0–1.1 Va (Va = 1435 Å3) for helium-bearing albite melt and 0.89–1.09 Vb (Vb = 1389 Å3) 
for helium-bearing model basalt melt. The DP-GEN scheme works iteratively, and each iteration includes three 
stages, exploration, labeling, and training. To begin with, rough DP models are first trained by a simple data set. 
The following are the details of our training setups. 
 
Initial data set. We randomly picked 10 configurations (1 He + 8 NaAlSi3O8, 105 atoms for helium-bearing 
albite melt and 1 He + Ca9Mg6Al6Si18O60, 100 atoms for helium-bearing model basalt melt) at each volume (1.0 
Va, 1.02 Va, 1.05 Va, and 1.1 Va, where Va = 1435 Å3 for helium-bearing albite melt and 0.89 Vb, 0.94 Vb, 1.0 Vb, 
and 1.09 Vb, where Vb = 1389 Å3 for helium-bearing model basalt melt) from first-principles molecular dynamics 
(FPMD) simulations as the initial configurations. Then short-time (40 femtoseconds) and high-precision (see the 
labeling step) FPMD simulations starting from each of the initial configurations were performed to generate the 
initial data set, which were labeled with energy and force. 
 
Exploration. DP-based molecular dynamics (DPMD) simulations using the LAMMPS package (Plimpton, 1995) 
interfaced with the DeepMD-kit (Wang et al., 2018) were performed to explore the configurational space. In each 
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iteration, canonical (NVT) simulations of 4 volumes as used in creating the initial data set and 6 temperatures 
(1400, 1700, 2200, 3000, 3500, 4000 K) were conducted. The time duration of these simulations increased from 
1 to 10 picosecond (ps) with increasing iterations (i.e., 1 ps in the first iteration, 3 ps in the second iteration, 6 ps 
in the third iteration, 10 ps in the fourth and remaining iterations until convergence). The explored configurations 
are categorized as failed, candidate, and accurate, according to the maximum deviation of forces (𝛿𝛿𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚), defined 
as 𝛿𝛿𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
�〈‖𝑓𝑓𝑖𝑖 − 〈𝑓𝑓𝑖𝑖〉‖2〉, where 𝑓𝑓𝑖𝑖 is the force acting on atom i, and 〈… 〉 represents the average of the DP 

model ensemble. The failed and accurate sets include configurations with large force deviations (𝛿𝛿𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 > 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ) 
and small force deviations ( 𝛿𝛿𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 < 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙) , respectively, where 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ  and 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙  are user-provided. The 
configurations with maximum force deviations between 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙  and 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎare classified as candidates. A good 
convergence of the DP-GEN iterations is achieved when almost all the explored configurations are categorized 
as accurate. The lower and higher force deviations (𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 and 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ) were set to be 0.15 and 0.40 eV/Å for the first 
8 iterations, 0.25 and 0.50 eV/Å for the second 6 iterations. In each iteration, 300 configurations in the candidate 
set were randomly picked and sent to the labelling stage.  
 
Labelling. DFT calculations were conducted within local density approximation (Ceperley and Alder, 1980) and 
projector augmented wave method (Blochl, 1994; Kresse and Joubert, 1999) using Vienna Ab-initio Simulation 
package (Kresse and Furthmuller, 1996). We used a plane-wave cutoff energy of 700 eV and Gamma-point 
Brillouin-zone sampling. The convergence criterion of the self-consistent field (SCF) was set to be 10−6 eV. 
 
Training. The smoothed version of DP (Zhang et al., 2018) implemented in DeepMD-kit (1.2.0) (Wang et al., 
2018) was applied to train the potential energy surface. The sizes of the embedding and fitting networks were set 
to be (25, 50, 100) and (240, 240, 240). The radial cutoff was chosen to be 6.0 Å in the DP-GEN iterations. The 
start learning rate, decay rate, and decay steps were 0.001, 0.95, and 2000, respectively. In each iteration, four DP 
models were trained for 400, 000 steps with the same architecture and data set but different initial model 
parameters. After the DP-GEN iterations were converged, we generated the final DP model with a radial cutoff 
set to 7.0 Å and training steps set to 1,000,000 with the decay step set to 5000. A new exploration stage begins 
by using the newly trained DP models based on the updated data set. 
 
In total, we performed 14 DP-GEN iterations and about 2.88 million helium-bearing albite melt configurations 
were explored, so as for helium-bearing model basalt melt. A small portion (~0.15 %) of them was selected for 
labeling. The percentage of configurations categorized as accurate in the exploration stage of the last iteration 
was around 99 %. With two well-trained DP models for the two melts, respectively, we first equilibrated the 
systems in the NPT ensemble at different temperatures (3000, 2200, 1700 K) and zero pressure to extract the 
corresponding cell volumes. Then we performed canonical (NVT) simulations for each He isotope. The volumes 
we obtained are Va = 1570, 1535, and 1505 Å3 at 3000, 2200, and 1700 K, respectively; Vb = 1390, 1338, and 
1300 Å3 at 3000, 2200, and 1700 K, respectively. 
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Numerical Modelling of Diffusion 
 
The evolution of He concentration profile in melts during diffusive gas loss can be described by: 

∂𝐶𝐶
∂𝑡𝑡

= 𝐷𝐷 𝜕𝜕2𝐶𝐶
𝜕𝜕2𝑚𝑚

,                                                                                                                                                               

where the initial concentration distribution is C = C0 for all values of x and one boundary concentration 
distribution is ∂𝐶𝐶(𝑚𝑚 = 0,   𝑡𝑡 > 0) ∂𝑚𝑚⁄ = 0. Diffusivities of He in rhyolite and basalt melt at 1100 and 1400 K, 
respectively, are estimated by using our fitted Arrhenius relationship. Experimental and thermodynamic 
constraints on He elemental/isotopic systematics during magma degassing is largely absent. Here we assume that 
the He concentration in the vapour at the melt-vapour interface, 𝐶𝐶(𝑚𝑚 = 𝐿𝐿, 𝑡𝑡 > 0), is zero. This simplification 
may make sense as He is highly volatile and in the vapour He diffuses several orders of magnitude faster than 
that in the melt. A non-zero He concentration in the vapour at the melt-vapour interface affects the absolute values 
of model predictions but not the overall conclusions as shown in Figure 4. The evolution of (3He/4He)/(3He/4He)0 
and He loss ratio are calculated by adding up all the corresponding values in the melt. Our results for 𝛽𝛽 equal to 
0.5 are close to the one calculated for spherical geometry (Trull and Kurz, 1999), suggesting that the geometry 
does not affect the overall conclusions either. 
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Supplementary Tables 

 
Table S-1 Diffusion coefficients of He isotopes in albite and model basalt melts at different temperatures around zero 
pressure. Estimated diffusivities of 4He in albite and model basalt melts at 3000 K from 100 ps FPMD simulations are (69.8 
± 12.3) × 10−9 and (41.6 ± 5.6) × 10−9 m2/s, respectively. 
 
 

 T  
(K) 

MHe 
(g/mol) 

DHe 
(10−9 m2/s) 

albite 3000 1 124 ± 8 
 3000 2 97.5 ± 3.2 
 3000 3 84.6 ± 5.5 
 3000 4 74.7 ± 7.2 

 
 2200 1 64.9 ± 9.9 
 2200 2 52.8 ± 1.9 
 2200 3 46.4 ± 2.5 
 2200 4 40.5 ± 2.6 

 
 1700 1 49.9 ± 9.3 
 1700 2 39.2 ± 6.3 
 1700 3 35.5 ± 5.7 
 1700 4 31.5 ± 5.9 

 
model basalt 3000 1 67.5 ± 3.2 

 3000 2 56.0 ± 1.6 
 3000 3 47.6 ± 1.5 
 3000 4 44.1 ± 1.7 

 
 2200 1 27.6 ± 1.0 
 2200 2 22.1 ± 1.7 
 2200 3 20.2 ± 1.3 
 2200 4    18.0 ± 0.6 

 
 1700 1 8.72 ± 1.32 
 1700 2 7.16 ± 0.69 
 1700 3 6.65 ± 0.76 
 1700 4 5.88 ± 0.63 
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Supplementary Figures 
 

 
 
 
Figure S-1 Comparison of normalised energies calculated by deep potential (dp) and density functional theory (DFT) 
using a test data set. 
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Figure S-2 Comparison of forces calculated by deep potential (dp) and density functional theory (DFT) using a test 
data set. 
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Figure S-3 Comparison of total (a and b) and partial (c-f) radial distribution functions calculated from DPMD and 
FPMD simulations. The FPMD data is more scattered due to limited sampling (50–150 ps). 
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Figure S-4 The predicted pre-exponential factor (𝐷𝐷0𝛼𝛼) and activation energy (𝐸𝐸𝛼𝛼) of He isotopes as a function of 
isotopic mass in albite and model basalt melts.  
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