Crustal controls on isotope variability of light noble gases along the Andean Volcanic Arc

J. Lages, A.L. Rizzo, A. Aiuppa, P. Robidoux, R. Aguilar, F. Apaza, P. Masias

Supplementary Information

The Supplementary Information includes:

- **S-1** New Isotope Results and Noble Gas Abundances (Peru and Chile)
 - Brief Petrological Descriptions of Volcanoes Sampled in This Study
 - Table S-1
- **S-2** Data References, Dataset Description and Full Data Table (with Table Guide)
 - S-2.1 Catalogue References
 - S-2.2 Table Guidelines
 - Table S-2
- **S-3** Neon and Argon Systematics of Andean Magmatic Fluids
 - Figures S-1 and S-2
- **S-4** Slab Constraints from Th/La in Sediments (Subducted) and Volcanic Products (Erupted) Along the Andean Volcanic Arc
 - Tables S-3 and S-4
- Supplementary Information References
S-1 New Isotope Results and Noble Gas Abundances (Peru and S Chile)

Brief Petrological Descriptions of Volcanoes Sampled in This Study

Sabancaya (Peru, CVZ)

The Ampato–Sabancaya volcanic complex comprises two successive edifices. During the Holocene, eruptive activity migrated to the NE and built up the Sabancaya edifice, between 6 and 3 ka. This cone comprises andesitic and dacitic blocky lava flows emplaced during at least two eruptive stages (Samaniego et al., 2016). The Ampato–Sabancaya rocks display a high-K magmatic affinity and range from andesites to dacites (57–69 wt. % SiO₂), with rare rhyolitic compositions (74–77 wt. % SiO₂). We analysed two lava samples from the Sabancaya basal edifice (3 ± 5 ka; Samaniego et al., 2016) that present porphyritic texture, composed of phenocrysts (30–60 vol. %) of plagioclase, biotite, amphibole, clinopyroxene, Fe-Ti oxides, and eventually by orthopyroxene and olivine (<2 %; Samaniego et al., 2016). The FIs analysed from noble gases in this study were entrapped in clinopyroxene host minerals (Table S-1).

Ubinas (Peru, CVZ)

Over the past 500 years, Ubinas produced mostly tephra with a trend towards more mafic magma compositions in recent times (Thouret et al., 2005). The 2006 and 2014 juvenile blocks here analysed are dark to grey, dense to poorly vesicular, porphyritic andesites bearing 20–25 vol. % phenocrysts (300 μm to 1.8 mm), 30–40 vol. % microphenocrysts (100–300 μm), and 35–50 vol. % matrix glass. Phenocrysts of plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxides are abundant. Both samples show a similar mineral assemblage including plagioclase, clinopyroxene, orthopyroxene, and magnetite with scarce amphibole and olivine (Rivera et al., 2014). Olivine phenocrysts occur in the 2006 ballistic blocks, although not in sufficient amounts for FIs analysis of noble gases.

El Misti (Peru, CVZ)

El Misti is a major andesitic volcano located near the city of Arequipa in the northern Central Volcanic Zone. Plagioclase is by far the most abundant mineral phase followed in order of abundance by amphibole and pyroxene. Olivine occurs only in mafic andesites and when present is scarce, never exceeding 2 vol. %. Rivera et al. (2017) report on subhedral to anhedral olivine crystals with sizes smaller than 400 μm for Misti 2 lava flows from which both samples in this study were collected (112–40 ka), with forsterite composition of Fo₇₆–₈₀. When compared with olivines from primitive arc magmas (Fo₉₀), the relatively low-Fo content of the El Misti olivine (Fo₇₀–₈₀) provides evidence against a pure, primary, mantled-derived origin for El Misti rocks (Rivera et al., 2017).

Villarrica (CSVZ, South Chile)

Activity at Villarrica has been characterised in the past by frequent small eruptions as well as highly explosive, caldera-forming pyroclastic eruptions of mainly basaltic andesite magma (Moreno and Clavero, 2006). Samples collected for analysis included scoria samples from the 3 March 2015 paroxysmal eruption (Aiuppa et al., 2017), with Fo contents ranging from about 70 to 82 % (avg. 77 %). Previously analysed samples representing the magma filling the central crater were determined to hold 33 wt. % plagioclase (An₃₈–₇₄), 7 wt. % olivine (Fo₇₅–₇₈), and trace amounts of chromian spinel (Witter et al., 2004). The other sample analysed (HCH2A1; Sancho, 2019) is taken from a ~100-m-high adventitious eruptive centre from the sub-group 2 of Chaillupén hch2 (<3.7 ka; Moreno and Clavero, 2006). The rock represents a ballistic projectile taken on the crater rim of a pyroclastic cone, ubicitated downhill at the southern end of the N–S fracture that cuts through Villarrica’s south flank. The rock sample is characterised as a fine-grained, dense fusiform bomb-size pyroclast of mafic composition with 20 vol. % plagioclase, 6 vol. % clinopyroxene, 4 vol. % olivine as determined from thin section analysis.
<table>
<thead>
<tr>
<th>Volcano</th>
<th>Sample ID</th>
<th>Sample details</th>
<th>Rock*</th>
<th>Min. phase</th>
<th>[He]$^{10^{-13}}$</th>
<th>[Ne]$^{10^{-17}}$</th>
<th>[36Ar]$^{10^{-12}}$</th>
<th>[36Ar]$^{10^{-15}}$</th>
<th>4He/20Ne</th>
<th>20Ne/22Ne</th>
<th>21Ne/22Ne</th>
<th>4He/40Ar</th>
<th>40Ar/36Ar</th>
<th>3He/4He</th>
<th>3He/4He</th>
<th>40Ar/3He</th>
<th>CO₂/3He</th>
<th>10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Chile (SVZ)</td>
<td></td>
</tr>
<tr>
<td>Villarrica</td>
<td>2015_B</td>
<td>Scoria</td>
<td>BA</td>
<td>Ol</td>
<td>1.27</td>
<td>2.50</td>
<td>6.15</td>
<td>20.38</td>
<td>1.24</td>
<td>50.8</td>
<td>9.83 ± 0.03</td>
<td>0.0295 ± 0.0005</td>
<td>1.02</td>
<td>301.6 ± 0.1</td>
<td>6.43</td>
<td>6.46 ± 0.12</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCH2A1</td>
<td>Pyroclast (bomb)</td>
<td>BA</td>
<td>Ol</td>
<td>0.72</td>
<td>10.32</td>
<td>1.03</td>
<td>3.40</td>
<td>0.21</td>
<td>7.0</td>
<td>9.81 ± 0.02</td>
<td>0.0293 ± 0.0003</td>
<td>3.39</td>
<td>301.8 ± 0.7</td>
<td>6.39</td>
<td>6.66 ± 0.13</td>
<td>0.627</td>
<td></td>
</tr>
<tr>
<td>Peru (CVZ)</td>
<td></td>
</tr>
<tr>
<td>Ubinas</td>
<td>2014 Juvenile blocks</td>
<td></td>
<td>A</td>
<td>Cpx</td>
<td>0.72</td>
<td>9.86</td>
<td>6.95</td>
<td>19.75</td>
<td>11.19</td>
<td>7.3</td>
<td>9.67 ± 0.02</td>
<td>0.0284 ± 0.0003</td>
<td>0.06</td>
<td>352.2 ± 0.8</td>
<td>5.64</td>
<td>5.86 ± 0.16</td>
<td>16.461</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016 A & B Juvenile blocks</td>
<td></td>
<td>A</td>
<td>Cpx</td>
<td>1.29</td>
<td>39.69</td>
<td>15.27</td>
<td>48.72</td>
<td>8.75</td>
<td>3.2</td>
<td>9.66 ± 0.02</td>
<td>0.0285 ± 0.0002</td>
<td>0.15</td>
<td>313.5 ± 0.4</td>
<td>5.49</td>
<td>6.01 ± 0.16</td>
<td>7.203</td>
<td></td>
</tr>
<tr>
<td>Sabancaya</td>
<td>SA-09-11 Lava flow</td>
<td></td>
<td>A</td>
<td>Cpx</td>
<td>0.38</td>
<td>10.63</td>
<td>0.71</td>
<td>1.98</td>
<td>1.27</td>
<td>3.6</td>
<td>9.67 ± 0.03</td>
<td>0.0288 ± 0.0004</td>
<td>0.30</td>
<td>359.7 ± 0.2</td>
<td>5.45</td>
<td>5.92 ± 0.23</td>
<td>0.484</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SA-09-17 Lava flow</td>
<td></td>
<td>A</td>
<td>Cpx</td>
<td>0.08</td>
<td>12.57</td>
<td>0.93</td>
<td>2.92</td>
<td>0.70</td>
<td>0.7</td>
<td>9.77 ± 0.01</td>
<td>0.0292 ± 0.0003</td>
<td>0.12</td>
<td>319.4 ± 0.1</td>
<td>1.45</td>
<td>2.11 ± 0.18</td>
<td>16.460</td>
<td></td>
</tr>
<tr>
<td>El Misti</td>
<td>Misti 2 (A) Lava flow</td>
<td></td>
<td>A</td>
<td>Cpx</td>
<td>1.19</td>
<td>2.18</td>
<td>4.16</td>
<td>1.35</td>
<td>1.82</td>
<td>0.9</td>
<td>9.89 ± 0.01</td>
<td>0.0289 ± 0.00031</td>
<td>0.08</td>
<td>309.0 ± 0.6</td>
<td>3.93</td>
<td>5.80 ± 0.177</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Misti 2 (B) Lava flow</td>
<td></td>
<td>A</td>
<td>Cpx</td>
<td>0.78</td>
<td>1.31</td>
<td>4.84</td>
<td>1.56</td>
<td>2.32</td>
<td>0.9</td>
<td>9.84 ± 0.01</td>
<td>0.0297 ± 0.00019</td>
<td>0.12</td>
<td>310.4 ± 0.6</td>
<td>4.43</td>
<td>6.36 ± 0.190</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

* Host rock chemical classification on the basis of SiO$_2$ content: A, andesite; BA, basaltic-andesite.

* Mineral phases analysed: Ol, olivine; Cpx, clinopyroxene.

* Noble gas and CO₂ concentrations in mol g$^{-3}$.
S-2 Data References, Dataset Description, and Full Data Table (with Table Guide)

The data table below includes He, Ar, and Ne data available for quaternary volcanoes from the Andean Volcanic Arc. Noble gas data reported for amagmatic regions of the arc (e.g., flat-slab segments) have not been included (see Simmons et al., 1987; Hoke et al., 1994; Hoke and Lamb, 2007; Newell et al., 2015).

S-2.1 Catalogue References (in Table S-2)

S-2.2 Table Guidelines

The colours of the headlines throughout the noble gas catalogue table correspond to the colour scheme used in the figures to distinguish between the five different countries and their respective volcanic arc segments (NVZ, Colombia and Ecuador; CVZ, Peru and North Chile; SVZ, South Chile):

i) **Lat and Long columns**: “Lat” (latitude) and “Long” (longitude), when not provided, were estimated by name of sampling location and/or map figures showing sampling coordinates; values inferred appear in red in both columns. Note that FIs data are assigned the exact coordinates of the volcanic edifice of origin.

ii) **Dist. (m) and Temp. (°C)**: Values for distance (Dist.) and temperature (Temp.), when not originally reported, were assigned based on sampling coordinates (for distance to the main volcanic centre) and previous temperatures reported for the same sampling location (for the temperature column), all in red. Samples with no temperature and/or distance information are due to insufficient information available to infer the sampling parameters. For hydrothermal samples not associated with a main volcanic system, the distance parameter results non-applicable (n/a).

iii) **Type**: The dataset is subdivided into the following sample types (see also Fig. 1 in the main text): 1, fluid inclusions (FIs) data in olivine phenocrysts; 2, FIs in clinopyroxene; 3, FIs in orthopyroxene; 4, free gases at >100 °C; 5, free gases at 50–100 °C; 6, free gases at <50 °C.

iv) **Isotope ratios correction**: Helium isotopic ratios reported in the form of R_{C}/R_{A}, where R_{C} is the air-corrected 3He/4He ratio of the sample, assessed based on 4He/20Ne ratios (also in table):

$$R_{C}/R_{A} = [(R_{M}/R_{A})(He/Ne)_{M} - (He/Ne)_{air}]/[(He/Ne)_{M} - (He/Ne)_{air}],$$

where the subscripts “M” and “air” refer to measured and atmospheric theoretical values, respectively. Argon isotope ratios account for atmospheric-corrected 40Ar, assuming that all 36Ar contained in the gas phase is of atmospheric origin:

$$^{40}Ar^{*} = ^{40}Ar_{M} - [^{40}Ar/^{36}Ar]_{air}^{36}Ar_{M},$$

where $^{40}Ar^{*}$ represents the corrected isotope value and M indicates the measured value.

v) **err**: Isotopic ratio errors are 1σ uncertainties.

Table S-2 Noble gas catalogue of the Andean Volcanic Arc.

Table S-2 is available for download (Excel) from the online version of the article at http://www.geochemicalperspectivesletters.org/article2134.
S-3 Neon and Argon Systematics of Andean Magmatic Fluids

In contrast to the extensive 3He/4He database described in the main text, there are relatively few 40Ar/36Ar samples (118) and even fewer 20Ne/22Ne and 21Ne/22Ne samples (34 and 33, respectively; Fig. S-1).

Compared to intraplate and middle oceanic ridge environments, subduction-related fluids are known to carry larger proportions of atmospheric components (Burnard et al., 1997), and Ar isotopes in FIs from volcanic arc rocks consistently show 40Ar/36Ar ratios close to the atmosphere (295.5; Hilton et al., 2002). In our catalogue, the observed Andean gas-rocks 40Ar/36Ar ratios range from 287.5 to 610, but the arc average of ~339 (taken across all gas-rocks samples) denotes a close-to-atmospheric 40Ar/36Ar signature, well below that of MORB (~44,000; Moreira et al., 1998). Similarly, neon isotopes (\leq0.038 for 21Ne/22Ne and \leq10.46 for 20Ne/22Ne) cluster at around the atmospheric ratios (0.029 and 9.8 for 21Ne/22Ne and 20Ne/22Ne, respectively; Sarda et al., 1988). These atmospheric Ar-Ne isotopic signatures imply variable (but substantial) degrees of contamination by an atmosphere-derived component that reflect their relatively large (compared to helium) air abundances (Hilton et al., 2002; Fig. S-2). Notably, FIs also exhibit this atmospheric imprint: their Ne isotopic pairs and 40Ar/36Ar ratios (see histogram in Figs. 1 and S-1) are often lower than in high-temperature gases and comparable to those obtained from low-temperature emission sources. Recycling of atmosphere-derived Ar in the mantle, via dehydration of the subducting oceanic crust, has often been invoked (Matsumoto et al., 2001; Hopp and Ionov, 2011; Di Piazza et al., 2015; Rizzo et al., 2016; Robidoux et al., 2017, 2020; Battaglia et al., 2018), although air contamination during surface rock exposure is often difficult to rule out.

Figure S-2 illustrates the binary trends of atmosphere-mantle mixing for both Argon and Neon isotopic ratios. Most importantly, our dataset indicates that atmosphere-derived components are still dominant even in FIs. Contrarily to the 3He/4He results, these show little difference when compared to argon and neon isotope results obtained in free gases, including those <100 °C (see Fig. 1 in the main text).
S-4 Slab Constraints from Th/La in Sediments (Subducted) and Volcanic Products (Erupted) Along the Andean Volcanic Arc

To test the possible slab control on the $^3\text{He}/^4\text{He}$ signature of the mantle wedge along the Andes, we followed the approach of Plank (2005), who used the Th/La ratio as a tracer for the contribution of subducting sediments to arc magmas. This tracer is particularly useful since radiogenic ^4He mostly derives from the decay of natural U and Th series elements in rocks and sediments.

The author suggests that where little sediment subducts, arcs should have approximately mantle Th/La, whereas, in places with a high flux of subducted sediment, the Th/La of the arc should approach the sediment ratio. The latter varies with the proportions of terrigenous, hydrogenous and volcanioclastic sources. Th/La signatures in arc magmas should therefore provide information on the proportion of sediment to mantle, and therefore a way to calibrate the influence of sediment melts delivered by the slab at an arc-segment scale.

The Th/La data used in Figure 3a, b (main text) have been extracted from the ‘GEOROC’ (Geochemistry of Rocks of the Oceans and Continents) database (http://georoc.mpch-mainz.gwdg.de/georoc/Start.asp). The relevant data have been taken from the ‘Precompiled Files/Locations/Convergent Margins’ files ‘ANDEAN ARC part1.csv’ and ‘ANDEAN ARC part2.csv’ that are freely available for download. The following tables summarise the available dataset.

Figure S-2 Air-MORB mixing showing the extent of air contamination in samples from all categories (from FIs to low-temperature free gases); Inset: binary mixing between air and a MORB mantle as defined by Sarda et al. (1988) and Moreira et al. (1998) at $^{21}\text{Ne}^{22}\text{Ne} = 0.06$ and $^{20}\text{Ne}^{22}\text{Ne} = 12.5$; binary mixing between air and the OIB domain of the Galapagos Islands as determined by Kurz et al. (2009) at $^{21}\text{Ne}^{22}\text{Ne} = 0.032$ and $^{20}\text{Ne}^{22}\text{Ne} = 12.5$; crustal-neon trend from Kennedy et al. (1990).
Table S-3 Th/La data used in Figure 3a.

<table>
<thead>
<tr>
<th>Arc Segment</th>
<th>Volcanic products (GEOROC)</th>
<th>Sediments (Plank, 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulk Arc Segment Th/La (avg.)</td>
<td>1σ</td>
</tr>
<tr>
<td>Colombia</td>
<td>0.1007</td>
<td>0.0383</td>
</tr>
<tr>
<td>Ecuador</td>
<td>0.1746</td>
<td>0.0464</td>
</tr>
<tr>
<td>Peru</td>
<td>0.1723</td>
<td>0.1084</td>
</tr>
<tr>
<td>N Chile</td>
<td>0.2399</td>
<td>0.1133</td>
</tr>
<tr>
<td>S Chile</td>
<td>0.2177</td>
<td>0.1081</td>
</tr>
</tbody>
</table>

* Including only samples with <58 wt. % SiO₂.

1,2 Th and La contents in sediments are averages for Colombia and Ecuador.

Table S-4 Th/La data used in Figure 3b.

<table>
<thead>
<tr>
<th>Volcanic system</th>
<th>GEOROC dataset</th>
<th>This review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg Th/La of volcanic products</td>
<td>1σ</td>
</tr>
<tr>
<td>Nevado del Ruiz Galeras</td>
<td>0.2665</td>
<td>0.0798</td>
</tr>
</tbody>
</table>
<pre><code> | 0.2953 | 0.0684 | 13 | 8.84 |
</code></pre>
<p>| Cotopaxi | 0.3099 | 0.1552 | 84 | 7.04 |
| Tungurahua | 0.3262 | 0.1183 | 89 | 7.40 |
| El Reventador | 0.1584 | 0.0182 | 15 | 6.98 |
| Ubinas | 0.1800 | 0.0344 | 14 | 6.01 |
| El Misti | 0.3462 | 0.2109 | 40 | 6.36 |
| Sabancaya | 0.2432 | 0.1303 | 14 | 5.92 |
| Lascar | 0.3160 | 0.1087 | 8 | 7.30 |
| Lastarria | 0.5908 | 0.1473 | 3 | 8.01 |
| Villarica | 0.1956 | 0.0694 | 10 | 6.66 |
| Copahue | 0.4165 | 0.0001 | 2 | 7.94 |</p>
Supplementary Information References

