Crustal controls on light noble gas isotope variability
along the Andean Volcanic Arc

J. Lages1*, A.L. Rizzo2, A. Aiuppa1-2, P. Robidoux3, R. Aguilar4, F. Apaza4, P. Masias4

Abstract

This study combines new noble gas data from fluid inclusions in minerals from Sabancaya, Ubinas, and El Misti (CVZ, Peru) and Villarica (South Chile, SVZ) with a revised noble gas compilation in the Andes, to identify systematic along arc variations in helium isotope compositions. We find 3He/4He ratios varying from 8.8 Ra (Colombia) to 7.4 Ra (Ecuador) within the NVZ, and only as high as 6.4 Ra in the CVZ (Ra is the atmospheric 3He/4He ratio of 1.39 × 10−6). These distinct isotope compositions cannot be explained by variable radiogenic 4He production via slab fluid transport of U and Th in the mantle wedge, since both NVZ and CVZ share similar slab sediment inputs (Th/La = 0.08–0.13). Instead, the progressively more radiogenic 3He/4He signatures in Ecuador and Peru reflect 3He addition upon magma ascent from the subducted (U-Th-rich) terrigenous sediments. Our results bring strong evidence for the major role played by crustal processes in governing noble gas compositions along continental arcs.

Introduction

Subduction zones are the main drivers of volatile exchange between the Earth’s interior reservoirs and the atmosphere (Zellmer et al., 2015). Studying the chemical and isotopic imprints of arc-related fluids is key to resolve their origin and fate along convergent margins (Hilton et al., 2002). Noble gases in arc magmatic/hydrothermal fluids, and trapped as fluid inclusions (FIs) in minerals, are fundamental tracers of the relative contributions of potential sources at work in an arc context: the mantle, the subducted slab, and the arc crust (Sano and Fischer, 2013).

Poreda and Craig (1989) were among the first to investigate arc gas emissions for their noble gas isotope compositions. They reported 3He/4He ratios close to those found in MORBs (8 ± 1; Graham, 2002), implying a dominant helium origin from the mantle wedge above the subducted plate. However, Hilton et al. (2002) estimated an average of 5.4 Ra for volcanic arc gases globally. Lower than MORB 3He/4He ratios have been reported in fluids emitted by active arcs (Colombia) to 7.4 Ra (Ecuador). This is particularly true for the Ecuadorian and Peruvian arcs, respectively, high degrees of crustal assimilation by magmas erupted in the region. Along the trench, the age of the subducted oceanic floor (46.2 Ma in North-Central Chile to 10.3 Ma in South Chile; Syracuse et al., 2010) and the degree of obliquity of the subducted slab (similar across the active volcanic zones) are other key factors impacting magma genesis and distribution of active volcanism in the Andes (Stern, 2004). Moreover, slab contributions have been noted in the C content of volcanic gas emissions (Aiuppa et al., 2017), whose compositions strongly correlate with the nature of subducted sediments in each region (Plank, 2014). However, in addition to the role of the slab, crustal processes have also been invoked (Hidalgo et al., 2012), especially for noble gases compositions previously reported for the continental arc (e.g., Hilton et al., 1993).

Here, we present the very first noble gas data from Sabancaya, Ubinas, and El Misti (Central Volcanic Zone, Peru) and report on new noble gas chemical and isotope compositions for Villanica (South Chile). These were obtained from the analysis of bulk (primary and secondary) fluid inclusion compositions in minerals (olivine and pyroxene), which are key in providing noble gas compositions of the magmatic source, especially when surface emissions are absent or difficult to access. Our new

1. Dipartimento DSTE, Università degli Studi di Palermo, Palermo, Italy
2. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
3. Centro de Excelencia en Geotermia de los Andes (CEGA) y Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
4. Instituto Geológico Minero y Metalúrgico, Observatorio Vulcanológico del INGEMMET, Arequipa, Peru

* Corresponding author (email: jonaspedro.nogueiralago@u dechile.cl)
helium data, integrated with noble gas data from other volcanic zones in the Andes, are used to resolve crustal versus slab controls on noble gas isotope variability along the arc.

Results

Our noble gas results derive from CO$_2$-dominated FIs trapped in olivine (Villarica, South Chile) and clinopyroxene (Peru) phenocrysts as gas (vapour) bubbles during and after magma crystallisation. The phenocrysts were handpicked from pyroclastic and scoria deposits at Villarica, and ballistic blocks and andesitic lava flows in Peru (Supplemental Information S-1). We focus on pyroxene in Peruvian volcanic products as, due to the more evolved nature of magmas produced along the CVZ, olivine is scarce and recurrently found in insufficient amounts for noble gas analyses. We followed identical sample preparation and analytical procedures to those described in Lages et al. (2021) for bulk element and isotope composition measurements of noble gases in each sample.

Despite low helium concentrations in Peruvian phenocrysts (0.38–1.29 × 10$^{-13}$ mol/g), we obtain consistent results for Sabancaya, Ubinas, and El Misti volcanoes. The maximum observed 3He/4He ratios range from 5.9 (±0.2) to 6.4 (±0.2) RA (Table S-1). As for Villarica, we measure similar helium concentrations in olivine (only as high as 1.27 × 10$^{-13}$ mol/g). Both samples analysed yield comparable R_C/R_A values (6.5 ± 0.1 and 6.7 ± 0.1; Table S-1), below the MORB range, yet significantly higher than that reported in Hilton et al. (1993) of 4.3 ± 0.8 RA.

An Improved Catalogue for Light Noble Gases in Andean Fluids

Our new data (Table S-1) fill an information gap in the central and southern volcanic zones of the Andes and are interpreted in the context of a noble gas compilation (Table S-2) we assembled from published noble gas studies on quaternary volcanic centres along the arc.

In their global arc compilation, Hilton et al. (2002) listed 81 samples (predominantly <100 °C) with available 3He/4He information for the Andes (117 in Sano and Fischer, 2013). Our updated catalogue (Supplementary Information S-2) now includes a total of 261 gas samples, with a significantly higher representation of fluid inclusion data analysis. However, and despite the significant increase in the number of samples available (including for other noble gases such as Ar and Ne), the overall dataset remains predominantly dominated (>60 % of the total; Fig. 1) by low temperature (<100 °C) gas emissions. This reflects (i) the difficulty of accessing volcano summits where high temperature fumaroles are typically concentrated, and (ii) the widespread occurrence of more accessible, peripheral manifestations (bubbling springs, steaming grounds, diffuse degassing) in volcano surroundings. Unfortunately, these are recurrently affected by secondary processes, including dilution of “magmatic” fluids by atmospheric/crustal He that ultimately lowers the pristine 3He/4He ratio (e.g., gas manifestations at 0–100 °C and >3 km distance from the volcanic centre exhibit the lowest 3He/4He ratios on average; Fig. 1).

To overcome these limitations, recent studies have focused on the analysis of olivine- and pyroxene-hosted FIs found in lavas and pyroclastic deposits from active Andean volcanoes lacking noble gas information (e.g., Robidoux et al., 2020). Consequently, our novel data reported here for Ubinas, El Misti, and Sabancaya (Peru, CVZ), where surface gases have traditionally been challenging to measure (due to high level of activity at the open vents), delivers the first characterisation of noble gas signatures in the region. These, alongside our new noble gas results for Villarica (SVZ), provide the most thorough analysis of helium isotope compositions along the Andean volcanic arc.

Exploring the Catalogue: Surface Gases vs. Fluid Inclusions

Our updated Andean dataset (Table S-2) benefits from the significant addition of FIs data to a yet gas-dominated compilation. More importantly, it ensures significant representability of three Andean arc segments (NVZ, CVZ and SVZ), and especially of some of their current most active volcanoes. FIs account for only ~12 % of the helium dataset (Fig. 1). While Ne and Ar exhibit large proportions of atmospheric components, FIs generally exhibit higher 3He/4He ratios than surface gases. Figure 2 explores the 3He/4He populations of three Andean segments, and finds that (with the notable exception of Galeras; Sano et al., 1997) FIs yield higher R_C/R_A values than surface gases. Therefore, although FIs can potentially be affected by post-entrapment 3He and 4He in growth and diffusioncontrolled isotope fractionation, their 3He/4He signatures offer the best record of pristine magmatic source compositions. Our inferred magmatic end member compositions are shown in Figure 2, as derived from using the maximum R_C/R_A values for each arc segment. These are used below to interpret variations of 3He/4He signature in the mantle source along the arc.

Subducting Slab or Continental Crust?

Accepting our segment maximum R_C/R_A values (Fig. 2) as the most representative of the Andean magmatic source(s) (e. Geochem. Persp. Let. (2021) 19, 45–49 | doi: 10.7185/geochemlet.2134
g., as those least affected by secondary processes), we find little evidence of radiogenic contributions in Colombia and North/ South Chile, in which the magmatic end members yield MORB-like values. However, more radiogenic $^3\text{He}/^4\text{He}$ ratios are observed in Ecuador and Peru (Fig. 2). Our goal below is to address if the drivers of these along arc variations operate (i) deep in the mantle source (via the subducting slab), or (ii) in the crust during magma ascent/storage.

Slab sediments are known as effective U and Th carriers (e.g., Kelley et al., 2005), and the fluids/melts they form by dehydration/melting (Skora et al., 2015) may in principle lead to substantial radiogenic ^4He production (with a consequent $^3\text{He}/^4\text{He}$ ratio decrease) in the overriding mantle (Robidoux et al., 2017). We test the possible role of recycled subducting sediments using the Th/La ratio slab proxy (Supplementary Information S-4; Plank, 2005). The ratio between these fluid-immobile elements is typically low in MORBs (<0.1), elevated in the continental crust (>0.25), and varies in arc basalts (∼0.1–0.4) depending on the composition of sediments subducted at the corresponding trenches.

Plank (2005) demonstrates, for margins with high sediment fluxes (>0.32 Mg/yr/cm length), a correlation between Th/La in arc rocks and subducting sediments at corresponding trench. North and South Chile are the only Andean margins that fall in the high sediment flux category (0.53 and 0.55 Mg/yr/cm length, respectively), and their rock/sediment Th/La association consistently plot along the global array of Plank (2005), suggesting effective transfer of sediment-derived fluids to arc magmas in these regions (Fig. 3a, Table S-3). By contrast, Colombia, Ecuador, and Peru, all low flux segments, exhibit a large spread in bulk volcanic rock Th/La compositions and $^3\text{He}/^4\text{He}$ ratios, and no obvious correlation with sediment Th/La (Fig. 3a).

Instead, the Th/La vs. $^3\text{He}/^4\text{He}$ ratios association (Fig. 3b) is more consistent with the involvement of crustal fluids in the latter segments. We cannot exclude however, based on the results of Figure 3b, that the ∼1 Rₐ difference between Colombia (8.5 and 8.8 Rₐ) and North/South Chile (7.9 and 8.0 Rₐ) high Th/La ratios of ∼0.33 and 0.32, respectively; Fig. 3b; Tables S-3, S-4; Plank, 2014) is, at least partially, due to a higher U–Th slab recycling via subduction of sediments in the latter segment.

From Ballentine and Burnard (2002) the production rate of radiogenic ^4He from U and Th decay in the mantle wedge can be calculated as:

$$^4\text{He} \text{atoms g}^{-1} \text{yr}^{-1} = (3.115 \times 10^6 + 1.272 \times 10^5) [\text{U}] + 7.710 \times 10^5 [\text{Th}]$$

where [U] and [Th] correspond to the abundance of these elements in terrigenous products subducted in the region (Plank, 2014; Table S-3). Additionally, we assume (i) mantle ^4He concentrations in the same range of those measured in gas-rich fluid inclusions from Andean products (e.g., Ecuador; ×10⁻³² mol/g; Lages et al., 2021), and (ii) a mantle end member derived from the highest $^3\text{He}/^4\text{He}$ ratios measured in FIs (8.5 Rₐ, Nevado del Ruiz; Lages et al., 2021). From these, we estimate that in 10 kyr enough radiogenic ^4He would be produced to lower the helium isotope signature of the underlying mantle wedge toward North/South Chile end member values. This estimate is similar to the time length of slab dehydration and mantle wedge contamination happening via sediment melts transported in the slab (Plank, 2005).
We next test the hypothesis of a primary crustal control on the observed along arc variations in 4He/3He signatures, by matching these with the regional changes in crustal thickness (e.g., Assumpção et al., 2013; Fig. 4). On the south to north transect (Fig. 4), MORB-like helium isotope ratios are initially observed in North (CVZ) and South Chile (SVZ; 8.0 and 7.9 RA, respectively), radiogenic crustal 4He to magma ascending through (being arc (see inset Fig. 4). From this, we propose that the addition of 4He/3He ratios (<7.4 RA), and a decrease in crustal thickness (~50 km). The latter remains roughly constant up to the south of Colombia (~45 km), where in Galeras values as high as 8.8 RA in fumarolic gases were reported by Sano et al. (1997). However, further north, crustal thickness decreases to ~35 km below Nevado del Ruiz and olivine-hosted Fs record 4He/3He values amongst the highest ever recorded in arc volcanism (8.5 RA).

A co-variation between 3He/4He signatures and crustal thickness shows significant correlation at the scale of the entire arc (see inset Fig. 4). From this, we propose that the addition of radiogenic crustal 4He to magmatic ascending through (being stored within) U-Th-rich crustal lithotypes are the main control factor on fluid 3He/4He signatures of continental arc volcanoes (Fig. 4). The unequivocal correlation we bring to light for most of the Andes further underlines the sensitivity of He isotopes in identifying and assessing crustal contamination processes. This correlation must be tested at arc scale in other subduction zones globally, as a more relevant role of the slab can be anticipated in regions where terrigenous sediments dominate the subducting input.

Acknowledgments

Two reviewers substantially improved this paper and are gratefully acknowledged. We thank Marco Rivera (OV1-INGEMMET) for his support during fieldwork in Peru and Aaron Sancho for his work on Chaillupén samples (Villarica). INGV-Palermo provided the analytical facilities. We thank Mariano Tantillo and Mariangrazia Misseri for their support in sample preparation and noble gas analysis. The fieldwork portion of this work was funded by the DECADE initiative, from the Deep Carbon Observatory - Alfred P. Sloan Foundation. This study also received funding from Miur under grant PRIN2017-2017LMNFLA.

Editor: Maud Boyet

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2134.

© 2021 The Authors. This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www.geochemicalperspectivesletters.org/copyright-and-permissions.

References

