Molybdenum isotopes in plume-influenced MORBs reveal recycling of ancient anoxic sediments

Q. Ahmad1*, M. Wille1, C. Rosca2, J. Labidi3, T. Schmid1, K. Mezger1,4, S. König5

Abstract

Under modern oxidising Earth surface conditions, dehydrated subducted slabs show Mo isotope compositions as low as $\delta^{98/95}$Mo = −1.5 ‰, compared to the depleted mantle $\delta^{98/95}$Mo = −0.2 ‰. Such light Mo isotope compositions reflect the redox-dependent aqueous mobility of isotopically heavy Mo associated with slab dehydration. Here we analysed basaltic glasses from the South-Mid Atlantic Ridge, whose parental melts are influenced by the enriched Discovery and Shona mantle plumes. We report increasingly higher $\delta^{98/95}$Mo of up to −0.1 ‰ from the most depleted samples towards those tapping more enriched mantle sources. $\delta^{98/95}$Mo values correlate with radiogenic Sr and Nd isotopes, which indicates the recycling of Proterozoic sediments with a Mo isotopic composition that was not affected by subduction-related, anoxic dehydration. We propose that the Mo isotope signatures were retained during subduction and reflect anoxic conditions during deep sea sedimentation in the mid-Proterozoic. Finally, Mo isotope fractionation between different terrestrial reservoirs likely depends on the slab redox budget, and therefore on the timing of subduction with regard to Earth’s surface oxygenation.

Introduction

The quantification of element and isotope fractionation in subduction zones plays an important role in understanding (re)cycling mechanisms between the Earth’s surface and its interior over geological time scales. Element and isotope fractionation in this setting can be controlled by the prevailing redox conditions of the subducted material. As aerobic conditions prevail at the Earth’s surface today, deep sea sediments and altered oceanic crust (AOC) are largely oxidised and influence the redox budget of the subducting slab (e.g., Evans, 2012). It is still unclear whether the redox budget of slabs is directly correlated with the oxygenation of Earth’s atmosphere and oceans, and whether the redox state of the Earth’s surface influences the behaviour of redox-sensitive elements in subduction zone settings through Earth’s history.

A particularly suitable element to study the relationship between oxidised and reduced geochemical reservoirs is the redox-sensitive element Mo. The mobility of Mo from the subducted material is controlled by the redox state of slab-derived aqueous fluids and hydrous melts (Bali et al., 2012; Skora et al., 2017). Significant Mo mobilisation and isotope fractionation has been observed during subduction of oxidised lithologies, leaving behind a Mo depleted and isotopically light residual slab (e.g., Freymuth et al., 2015; König et al., 2016; Chen et al., 2019; Ahmad et al., 2021). Under reducing conditions, only limited Mo mobility is expected to occur in subducted lithologies (Bali et al., 2012; Skora et al., 2017) thus preserving pre-subducted Mo signatures of the surface. This redox dependent mobilisation of Mo during subduction metamorphism potentially allows reconstructing the redox budget of ancient subduction zones through Mo isotope compositions of mantle-derived material enriched by ancient recycled crustal components.

This study investigates Mo isotope systematics in a well characterised basaltic sample suite from the South Mid-Atlantic ridge (S-MAR) that shows evidence for interaction with the enriched Shona and Discovery mantle plumes (Supplementary Information S-1, Fig. S-1). Previous studies on these samples suggested recycling of ancient oceanic crust and sediments in their mantle source with an age between 1 and 2 Ga based on radiogenic isotopes, and the absence of mass independent fractionation of S isotopes (Douglass et al., 1999; Andres et al., 2002; Labidi et al., 2013). These basalts additionally feature increasingly heavier S and Se isotope compositions with indicators of mantle source enrichment, and are interpreted to reflect subduction recycling of reduced sediments from a redox stratified Proterozoic ocean (Labidi et al., 2013; Yierpan et al., 2020).

Results

The $\delta^{98/95}$Mo signatures of S-MAR basaltic glass samples range between −0.24 ‰ and −0.10 ‰. These $\delta^{98/95}$Mo values show...
Influence of an ancient low degree melt (Chen et al. 2013; Yierpan et al. 1999; Andres et al. 2002) on the signature of LOMU-affinity samples (Douglass et al. 2016). Rather, a recycled sediment component can explain the Pb isotope variations (see Supplementary Information S-2 for further discussion and labelling). This process would have obliterated any secondary mantle melting processes (such as sulfide melt segregation), or seawater alteration, are unlikely the causes for the observed heavy Mo isotope variations. In line with previous investigations showing covariations between other redox-sensitive stable Se-S isotopic systematics and radiogenic isotopes (Labidi et al., 2013; Yierpan et al., 2020), we suggest that a sediment contribution to the S-MAR mantle source is the most likely scenario for the observed heavy Mo isotope enrichment in our samples (see Supplementary Information S-3 for further discussion). This sedimentary source was previously inferred to have a mid-Proterozoic age (1 to 2 Ga; Douglass et al., 1999; Andres et al., 2002; Labidi et al., 2013; Yierpan et al., 2020).

Mobility of Mo during subduction: the role of fO2. Recycled Proterozoic sediments that enriched the S-MAR mantle source with isotopically heavy Mo are in stark contrast to inferred, isotopically light Mo in dehydration residues of subducted Phanerozoic metasediments (Ahmad et al., 2021). The trend towards higher observed (co-) variations of δ98/95Mo with increasing degrees of mantle source enrichment within the S-MAR suite therefore implies recycling of a sedimentary δ98/95Mo or even a total Mo budget unaffected by dehydration and melting during subduction. This may be reconciled with experimental studies showing immobility of Mo in low fO2-bearing slab fluids and hydrous slab melts (Bali et al., 2012; Skora et al., 2017; Chadwury et al., 2022). Experimental studies were conducted at subduction zone P-T and at reducing conditions, and showed that Mo4+ is immobile in fluids in the presence of rutile (Bali et al., 2012) and mobilisation of Mo is inefficient in melts due to increased partitioning of Mo4+ relative to Mo6+ into the residual phases such as sulfides or rutile (Skora et al., 2017; Chadwury et al., 2022). These findings are also consistent with subduction of organic matter (OM)-rich black shales in the Lesser Antilles Arc, where lavas south of Martinique exhibit high δ98/95Mo along with lower Mo/Ce (Freymuth et al., 2016; Gaschnig et al., 2017), suggesting the minute contribution of unfractionated slab-derived Mo to the mantle sources relative to melts originating from more oxidising sediments. Therefore, significant loss of heavy Mo during subduction metamorphism did not occur in the enriched mantle source component. This would have resulted in a preferential loss of more incompatible (isotopically heavy) Mo6+ during melting and dehydration (e.g., Chen et al., 2019; McCoy-West et al., 2019) and would shift δ98/95Mo of the residual subducted material towards lighter values. The interpretation is in line with the fO2-sensitive stable

Figure 1 Covariation diagram of MOBs. (a) δ98/95Mo vs. 87Sr/86Sr, (b) δ98/95Mo vs. 143Nd/144Nd. Mixing of a 1.5 Ga old pelagic sediment end member (best fit parameters from linear regression) with the ambient depleted mantle (see Table S-2 for mixing parameters). Mixing with upper continental crust (UCC) is plotted for comparison. External reproducibility on each isotope value is considered for regression, and the shaded area indicates 95% CI error envelope. PAR samples are excluded from regression. Error bars indicate 2 s.d. external reproducibility.

Discussion

Origin of enriched mantle component. Combined element and isotope systematics of S-MAR samples strongly suggest that secondary mantle melting processes (such as sulfide melt segregation and fractional crystallisation), or seawater alteration, are unlikely the causes for the observed Mo isotopic variations. This is because all these processes would have obliterated any correlation between Mo isotope composition and radiogenic isotopes (see Supplementary Information S-2 for further discussion). Low degree melting of mantle plume material has been suggested to affect geochemical signatures of investigated samples (le Roux et al., 2002a), and might have affected their δ98/95Mo (e.g., Chen et al., 2022). We argue that this process did not result in a first order modification of the enriched source signatures of our samples. Their distinct radiogenic isotope compositions, their covariation with stable Se and S signatures, and trace element systematics are independent of partial melting variations, suggesting the plume source was enriched prior to low degree mantle melting (le Roux et al., 2002a; Labidi et al., 2015; Yierpan et al., 2020). Moreover, the absence of a covariation of δ98/95Mo and Pb isotopes (Fig. S-4ac,d) does not support the influence of an ancient low degree melt (Chen et al., 2022). Rather, a recycled sediment component can explain the Pb isotope signature of LOMU-affinity samples (cf. Douglass et al., 1999; Andres et al., 2002). In addition, mantle melting degrees of 2.5% (le Roux et al., 2002a) cannot explain the observed variations of δ98/95Mo indicating that heavy Mo is likely a characteristic primary signature of the enriched plume material (see Supplementary Information S-2 for further details). Previous studies attributed this source enrichment to the influence of a recycled component, such as delaminated subcontinental lithospheric mantle, lower continental crust, or subducted sediment
Table 1 Average Mo isotope composition of MORBs from the S-MAR and PAR together with radiogenic isotope data (Douglass et al., 1999) and Se isotope compositions (Yierpan et al., 2020). Individual measurements are listed in Table S-1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>$^{98/95}$Mo (‰)A</th>
<th>$^{79/76}$Se (‰)B</th>
<th>87Sr/86Sr</th>
<th>143Nd/144Nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW9309 40D-1g</td>
<td>Southern Mid-Atlantic ridge</td>
<td>−0.231</td>
<td>3</td>
<td>−0.18</td>
<td>0.702997</td>
</tr>
<tr>
<td>EW9309 33D-1g</td>
<td>Depleted N-MORB (North)</td>
<td>−0.098</td>
<td>3</td>
<td>−0.03</td>
<td>0.70475</td>
</tr>
<tr>
<td>EW9309 28D-1g</td>
<td>Discovery influenced MORB (North)</td>
<td>−0.239</td>
<td>2</td>
<td>−0.14</td>
<td>0.70308</td>
</tr>
<tr>
<td>EW9309 2D-1g</td>
<td>Discovery influenced MORB (South)</td>
<td>−0.148</td>
<td>2</td>
<td>−0.08</td>
<td>0.704127</td>
</tr>
<tr>
<td>EW9309 4D-3g</td>
<td>Discovery influenced MORB (South)</td>
<td>−0.152</td>
<td>3</td>
<td>−0.04</td>
<td>0.703762</td>
</tr>
<tr>
<td>EW9309 9D-3g</td>
<td>Shona MORB</td>
<td>−0.183</td>
<td>2</td>
<td>−0.03</td>
<td>0.704284</td>
</tr>
<tr>
<td>EW9309 15D-1g</td>
<td>Shona influenced MORB</td>
<td>−0.207</td>
<td>2</td>
<td>−0.13</td>
<td>0.702741</td>
</tr>
<tr>
<td>EW9309 21D-1g</td>
<td>Shona influenced MORB</td>
<td>−0.188</td>
<td>2</td>
<td>−0.12</td>
<td>0.703115</td>
</tr>
<tr>
<td>EW9309 22D-3g</td>
<td>Shona influenced MORB</td>
<td>−0.187</td>
<td>2</td>
<td>−0.08</td>
<td>0.703576</td>
</tr>
<tr>
<td>PAC2 DR3 3-1</td>
<td>Depleted N-MORB</td>
<td>−0.245</td>
<td>3</td>
<td>−0.15</td>
<td>0.702488</td>
</tr>
<tr>
<td>PAC1 CV-02g</td>
<td>Depleted N-MORB</td>
<td>−0.297</td>
<td>3</td>
<td>−0.23</td>
<td>0.702568</td>
</tr>
</tbody>
</table>

A The external reproducibility (2 s.d.) is 0.05 ‰ (see Supplementary Information S-4).
B The external reproducibility (2 s.d.) is 0.08 ‰, except for EW9309 2D-1g and EW9309 9D-3g, for which it is 0.04 ‰ (Yierpan et al., 2020).

Least squares errors for variable $^{98/95}$Mo and [Mo] values for a given 1.5 Ga old sediment with 146Nd/144Nd and 87Sr/86Sr end member values (blue field in Fig. 2) show a similar pattern for both radiogenic isotope systems, which indicates that a mid-Proterozoic pelagic sediment is likely to be a valid end member. Best fits with minimum errors overlap with the lower 1σ of Proterozoic OM-rich sediment data from the literature (Ye et al., 2021; Table S-2) and can also be achieved with a recycled sediment contribution close to that of the UCC (~0.05 to 0.15 %); Willbold and Elliott, 2017 and references therein) with slightly higher $^{88/95}$Mo and [Mo] values. This points towards a minor authigenic Mo enrichment from seawater or a residual enrichment of Mo (e.g., Kendall et al., 2017) and implies that $^{98/95}$Mo has not been affected by oxic conditions during slab dehydration due to subduction of reducing lithologies (Fig. 2).

These findings support the notion that the deep ocean remained anoxic until the beginning of the Phanerozoic (e.g., Poulton and Canfield, 2011; Stolper and Keller, 2018). The extent of the biological pump in the Proterozoic ocean, where primary productivity in the oxygenated surface ocean was dominated by cyanobacteria, was lower compared to modern oceans and higher primary surface productivity was restricted to marine environments close to continents (Laakso and Schrag, 2019). This limited the OM flux to the Proterozoic deep ocean and therefore authigenic Mo accumulation from seawater. However, deep ocean anoxic conditions increased OM preservation and burial efficiency (Burdige, 2007). Furthermore, under anoxic conditions with an overall low concentration of dissolved SO$_4^{2-}$ and MoO$_4^{2-}$, neither a significant Mo enrichment from seawater into the sediment nor a significant Mo mobilisation during fluid alteration is expected (Lyons et al., 2014). The overall lower OM input to the deep ocean and smaller oceanic Mo reservoir can therefore explain the small authigenic heavy Mo contribution to the recycled mid-Proterozoic deep sea sediment (Fig. 2). With respect to the much shorter ocean residence time of Mo relative to the average lifetime of an oceanic crust, the S-MAR enriched end member is likely representative for overall reducing conditions during subduction and an average
subducted sedimentary Mo signature, which provides a context of deep ocean redox conditions.

Implications for the sedimentary Mo subduction cycle.

Due to the anoxic conditions in the Proterozoic deep ocean, oxidised species of major and minor elements like Fe, S and Mn, were absent in deep sea sediments, thus lowering their redox budget/oxidising capacity compared to present day marine lithologies (e.g., Evans, 2012; Ague et al., 2022). This may also explain the preserved $\delta^{98/95}$Mo of a reduced Proterozoic sediment component recycled into the S-MAR mantle source, in contrast to Neoproterozoic, deep mantle recycling of low $\delta^{98/95}$Mo into mantle plume sources (see also Ma et al., 2022). This is in line with Samoan OIBs, where $\delta^{98/95}$Mo signatures are interpreted as a mixture of isotopically heavy terrigenous sediments ($\delta^{98/95}$Mo \approx UCC) and isotopically light dehydrated mafic oceanic crust, which reflect the influence of a distinct pool of mid-Proterozoic recycled ocean crust (Gaschnig et al., 2021).

Altogether, this indicates that changing Earth surface redox conditions have influenced the f_O_2 conditions during subduction and the mobility of sedimentary Mo (and by analogy that of other redox sensitive elements) and hence, the Mo isotope budget between different Earth (silicate) reservoirs. This emphasises the time- and condition-related variations in Mo mobility during subduction on our planet (Fig. 3). We therefore conclude that the Mo isotope signature of plume-influenced volcanic rocks can be used to reconcile the redox conditions during

Figure 2 Least squares error ($\Delta^{98/95}$Mo in $\%$, up to 6 $\%$) between calculated mixing lines and analysed samples. Variables are the $\delta^{98/95}$Mo and [Mo] values derived from (a) the $\delta^{98/95}$Mo vs. δ^{87}Sr/δ^{86}Sr and (b) the $\delta^{98/95}$Mo vs. δ^{143}Nd/δ^{144}Nd relationship (Fig. 1). Literature values for potential (concentration averaged) recycled lithologies, and anoxic sediments sorted by age intervals are shown for comparison. See Table S-2 and Supplementary Information S-5 for references, mixing parameters, and further details.

Figure 3 Illustration of the subducted sedimentary Mo cycle during the Precambrian (left) and Phanerozoic (right). Deep sea sediments carry variable redox budgets influencing Mo mobility and hence isotope fractionation during subduction over Earth’s history (see text). UCC, upper continental crust; DM, depleted mantle; EM, enriched mantle.
ancient surface deposition of deep sea sediments (cf. Gaschnig et al., 2021) as well as during subduction-related prograde metamorphism and the inception of modern subduction.

Acknowledgements

This work was funded by the Swiss National Science Foundation, Switzerland (Grant number 182508) to MW. The MC–ICP–MS at the Institute of Geological Sciences, University of Bern used in this study was acquired within the framework of the NCCR project PlanetS (Grant nr. 1N4F0–141881) funded by the Swiss National Science Foundation, SK and CR acknowledge ERC Starting Grant 636808 (project O2RIGIN). SK also acknowledges Ramón y Cajal contract RYC2020-030014-I. Jörg Hermann and Paolo Sossi are acknowledged for discussions that contributed to this manuscript. We also wish to thank Alex McCoy-West and two anonymous reviewers for constructive reviews, as well as Helen Williams for editorial handling.

Editor: Helen Williams

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2236.

References

© 2022 The Authors. This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www.geochemicalperspectivesletters.org/copyright-and-permissions.

References

