K-Ca dating and Ca isotope composition of the oldest Solar System lava, Erg Chech 002

W. Dai1*, F. Moynier1, L. Fang1, J. Siebert1

Abstract

Erg Chech 002 (EC 002) is an andesitic meteorite, which is the oldest lava in the Solar System as determined by the 26Al-26Mg relative chronometer. Here, we present high precision Ca isotope data for the bulk rock and mineral separates of EC 002, and for the first time, obtain a 40K-40Ca isochron by using the Nu Sapphire, a collision cell equipped MC-ICP-MS instrument. The mineral separates yield a 40K-40Ca age of 4545 ± 78 Ma with an initial 40Ca/44Ca = 47.16065 ± 0.00049 (ε40CaSRM 915a = -0.33 ± 0.10). The age is identical with those obtained from other long lived isotopic systematics but more precise, and it is consistent with the short lived 26Al-26Mg age. The δ44/40Ca of EC 002 is 0.87 ± 0.05 % suggesting that EC 002 might represent a differentiated melt from an ordinary chondritic parent body. The extremely old age of EC 002, along with the similar ε40Ca values among most meteorites, suggests that the 40Ca was homogeneously distributed within early formed planetesimals.

Introduction

Some evolved, silica-rich achondrites have been the major source of knowledge on early Solar System crustal magmatism (e.g., Day et al., 2009; Srinivasan et al., 2018). Erg Chech 002 (EC 002) is an andesite achondrite, with high MgO and FeO content and a smooth trace element pattern, which is quite different from other anedicite achondrites but closely matches the experimental melts obtained from non-carbonaceous chondritic parent body. The extremely old age of EC 002, along with the similar ε40Ca values among most meteorites, suggests that the 40Ca was homogeneously distributed within early formed planetesimals.

Calcium (Ca) isotopes provide powerful tools for tracing planetary formation and evolution by studying the stable isotope variations, radiogenic enrichment, and nucleosynthetic anomalies (Russell et al., 1978). Given that Ca is a major element, 40K-40Ca dating could be well suited to date precious samples using the most limited mass of minerals (Shih et al., 1993). The novel collision cell (CO)-MC-ICP-MS, Nu Sapphire, is promising for Ca isotope measurements, including the abundance of 40Ca, which is impossible to measure by normal MC-ICP-MS due to the interference of 40K. Both stable and radiogenic Ca isotopic data can be obtained with high precision and the most limited sample consumption (~100 ng of Ca for each measurement; Dai et al., 2022; Moynier et al., 2022).

Equilibrium Ca Isotope Fractionation between Mineral Separates

We selected two pyroxene fractions and three plagioclase fractions, together with two bulk rock fractions which have been used for 26Al-26Mg and 147Sm-143Nd systematics, for Ca isotope analysis (Fang et al., 2022). Our method has the advantage of providing both stable and radiogenic Ca isotopic composition simultaneously (noted as δ44/40Ca and ε40Ca relative to SRM 915a standard; Table S-1, Supplementary Information). The stable isotopic composition can be used to test whether minerals are within isotopic equilibrium, which

1 Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, Paris 75005, France
* Corresponding author (email: dai@ipgp.fr)
is a prerequisite for radiometric dating but rarely tested. Considered as a melting product, EC 002 is also a well suited sample for studying stable Ca isotope fractionation during early planetary differentiation.

The $^{44/40}$Ca values of two bulk rock fractions are 0.88 ± 0.07 ‰ (2 s.d.) and 0.85 ± 0.11 ‰ (2 s.d.), which suggests that the $^{44/40}$Ca value of Erg Chech 002 is 0.87 ± 0.05 ‰ (2 s.d.), similar within error to the composition of most inner solar system.

Modelling the Ca Isotope Fractionation during Partial Melting of the EC 002 Parent Body

Partial melting would have affected the bulk Ca isotopic composition of the EC 002 lava. This effect needs to be corrected for estimating the composition of the parent body. The trace and major element compositions of EC 002 correspond to high proportions of melting (around 20–25 %) of an ordinary chondrite-like parent body (Barrat et al., 2021). Considering that the melting temperature for EC 002 is ∼1224 °C, a simple calculation based on the incremental non-modal batch melting model of an ordinary chondrite-like parent body can be used to estimate the effect of partial melting and obtain the original Ca isotope composition (see Supplementary Information for more details). Under this scenario, most of the Ca (85 %) was extracted from plagioclases and augites and caused limited fractionation (<0.1 ‰) between source materials and melts. Therefore, the $^{44/40}$Ca of EC 002 parent body is estimated to be around 0.94 ‰ (Fig. S–4). This result is distinct from carbonaceous meteorites and Ryugu samples (Moynier et al., 2022) and provides further evidence for a non-carbonaceous chondrite parent body (Valdes et al., 2021).

K-Ca Systematics of EC 002

The 40K–40Ca data and 44Ca/40Ca ratio of mineral separates yield an age of 4545 ± 78 Ma (2σ error) with an initial 40Ca/44Ca ratio of 47.16065 ± 0.00049 (2σ) (Fig. 2). The 40K–40Ca age for EC 002 is consistent with the 40K–40Ar (4534 ± 117 Ma) and 147Sm–143Nd ages (4521 ± 152 Ma) obtained from the same mineral fractions, but with an improvement on the error by about a factor 2, and also consistent with the closure age for the 26Al–26Mg system (4565.5–4566.9 Ma) within uncertainties (Barrat et al., 2021; Fang et al., 2022).

![Figure 1](https://example.com/fig1.png)

Figure 1 Plot of $\Delta^{44/40}$Ca$_{py-xp}$ versus equilibrium temperature of minerals. The red square represents the range of fractionation between pyroxenes and plagioclases and the relative temperature of mineral differentiation. Three solid lines are theoretical equations of equilibrium fractionation between pyroxenes and plagioclase: a, diopside-labradorite (Antonelli et al., 2019); b, diopside-anorthite (Zhang et al., 2018); c, diopside-anorthite (Huang et al., 2019). Four dashed lines represent equilibrium temperatures determined by different methods.

![Figure 2](https://example.com/fig2.png)

Figure 2 K-Ca isochron defined by pyroxenes, plagioclases, and bulk rock fractions of EC 002 using IsoplotR (Vermeesch, 2018). The error bars correspond to the 2 s.e. on the ratios. Seven data points define a linear array corresponding to a K-Ca age of 4545 ± 78 Ma for λ^{40}K = 0.5543 Ga$^{-1}$ (Steiger and Jäger, 1977).
The resetting of the isotopic system would occur when elemental and isotopic diffusion happened under secondary events. For the K-Ca system, the relatively slow diffusion coefficients of Ca can make it more resistant to reheating processes than the Rb-Sr or K-Ar systems (Shih et al., 2006). Timing of accretion of different planet bodies is from Schiller et al. (2018). The latest accretion ages of meteorites are set by their formation age: EC 002 (0.43–1.80 Ma), derived from the 26Al-26Mg system with different initial 27Al/26Al ratios; Fang et al., 2022), chondrites (mostly around 1–3 Ma; Krot et al., 2009). The 40Ca values of different planets and chondrites are taken from literature, and detailed information is reported in Table S-3.

The 40K-40Ca ages of extraterrestrial samples are limited and all cases were obtained using TIMS (Shih et al., 1993; Yokoyama et al., 2017). These ages commonly have less precision than other systems, such as Rb-Sr, due to the limited fractionation of K/Ca ratio in most igneous rocks and the high abundance of 40Ca compared to 40K. While the mineral separates of EC 002 comprised a relatively small range of 40K/40Ca ratios, yielding ~5 ε-unit enrichments on 40Ca/44Ca ratios, a precise and accurate age was still obtained by using the CC-MC-ICP-MS, Nu Sapphire. Given the small amount of Ca processed for each phase (~200 ng for each individual measurement) which correspond to less than 0.1 mg of minerals, this method displays great potential for future chronology of precious extraterrestrial materials such as future samples returned by space missions.

The 40K-40Ca isochron is obtained from the variation in the abundance of the radiogenic 40Ca in minerals with different K/Ca ratios. Meanwhile, the intercept of the K-Ca isochron represents the initial 40Ca value of EC 002 (~0.33 ± 0.10) and reflects its parent body’s value at the time of its accretion. Previous studies show variable 40Ca among different carbonaceous and ordinary chondrites which range from ~0.74 to ~1.01 and ~1.43 to ~1.83, respectively (Simon et al., 2009; Huang and Jacobsen, 2017; Yokoyama et al., 2017; Moynier et al., 2022). However, the average 40Ca of these chondrites mostly cluster and return a 40Ca value of ~0.23 ± 0.36 (2 s.e., n = 15) for ordinary chondrites and ~0.12 ± 0.27 (2 s.e., n = 15) for carbonaceous chondrites including the asteroid Ryugu (Table S-4, Fig. 3). The 40Ca value of EC 002 which represents the average of its parent body, is similar to those of chondrites and rocky planets in inner Solar System, such as Mars and Earth, within uncertainty (Fig. S-5). This observation suggests a homogenous 40Ca/44Ca distribution within early planetesimals, as early as 1.80 ± 0.01 Ma (the age of EC 002). Given that 40Ca is variable between refractory inclusions (mostly between -4 to $+4$ ε-units; Simon et al., 2009 and reference therein), this homogenisation must have occurred rapidly at the birth of Solar System (Fig. 3).

Ordinary and enstatite chondrites as well as terrestrial rocks have fairly homogeneous 44Ca/40Ca values, while carbonaceous chondrites including the primitive asteroid Ryugu have variable 44Ca/40Ca ranging from 0.28 % to 1.19 % (Simon and DePaolo, 2010; Valdes et al., 2014; Huang and Jacobsen, 2017; Moynier et al., 2022). Most CAIs are enriched in the lighter Ca isotope due to the large fractionation during condensation (Huang et al., 2012; Amsellem et al., 2017; Simon et al., 2017). Assuming that the homogenisation of Ca isotopes occurred quickly, variable CAI contents in different chondrites could be the main source accounting for the variation on 40Ca and 44Ca among different meteorites. The positive Tm anomalies found in carbonaceous chondrites and their correlation with...
δ44/40Ca point to a variable distribution of a refractory component similar to that in group II fine grained CaIs between carbonaceous chondrites (Huang et al., 2012; Dauphas and Pourmand, 2015). For example, the addition of ~4 % group I or ~1.5 % group II CaIs to a non-carbonaceous chondritic Ca isotopic composition could reproduce the range of δ44/40Ca values (as previously suggested by, e.g., Dauphas and Pourmand, 2015), while the effect on δ40Ca is more limited (Fig. 4). This may suggest that the inner Solar System is isotopically different from the outer Solar System due to its depletion in refractory materials (e.g., δ60Ca anomalies; Schiller et al., 2018). As a product of homogenisation during accretion, EC 002 may be taken as a representative sample for the average Ca isotope composition of the inner Solar System.

Acknowledgements

We deeply thank Justin Simon and an anonymous reviewer for constructive comments that greatly improved our manuscript. This work was partly supported by the LP2G analytical platform PARI, Ile-de-France SESAME Grants 12015908, the DIM ACAV+, the ERC grant 101001282 (METAL) (FM).

Editor: Francis McCubbin

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article/2302.

© 2023 The Authors. This work is distributed under the Creative Commons Attribution-Non-Commercial-No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www.geochemicalperspectivesletters.org/copyright-and-permissions. Cite this letter as: Dai, W., Moynier, F., Fang, L., Siebert, J. (2023) K-Ca dating and Ca isotope composition of the oldest Solar System lava, Erg Chech 002. Geochem. Persp. Let. 24, 33–37. https://doi.org/10.7185/geochemlet.2302

References

