Preferential mobilisation of oxidised iron by slab-derived hydrous silicate melts

C. Tiraboschi1*, C. McCammon2, A. Rohrbach1, S. Klemme1, J. Berndt1, C. Sanchez-Valle1

Abstract

The role of slab-derived hydrous silicate melts in the transfer of the oxidised signature in subduction zones remains poorly constrained. We have investigated the mobility and redox state of iron in hydrous silicate melts by carrying out solubility measurements of hematite–magnetite assemblages in a piston-cylinder apparatus combined with electron microprobe and Mössbauer analysis of the recovered glasses. The experiments were performed at subcritical conditions, i.e., two-fluid phases coexisting with the solid assemblage. We observe concentrations of total Fe as high as 1.85 ± 0.18 wt. % (2.07 ± 0.41 wt. % in saline systems) at 2 GPa and 900 °C, with Fe3+/Fe tot ratios of 0.79 ± 0.04 (0.45 ± 0.07) that indicate the dominance of oxidised iron in the melt phase. Combined with thermodynamic modelling to reconstruct the composition and speciation of the coexisting fluid phase, we demonstrate that hydrous silicate melts can transport 20 times more dissolved iron, preferentially as oxidised iron, than aqueous fluids at sub-arc conditions. Our results support the efficient dissolution of ‘fluid-insoluble’ iron oxides in slab-melts, which are thus efficient agents for the transfer of oxidised iron to the mantle wedge, ultimately contributing to the oxidation of the arc magma source.

Introduction

Arc magmas are characterised by a higher oxidation degree than magmas from other tectonic settings, including mid-oceanic ridge and ocean arc basalts (Carmichael, 1991; Kelley and Cottrell, 2009; Browne et al., 2014). The oxidised signature is thought to arise from the influx of oxidising slab-derived fluids or melts into the mantle wedge (e.g., Burgisser and Scaillet, 2007; Debret and Sverjensky, 2017; Bénard et al., 2018; Walters et al., 2020; Evans and Frost, 2021), although the actual oxidising agent and the transport mechanism remain a topic of discussion (e.g., Piccoli et al., 2019; Tollan and Hermann, 2019). Iron, as the most abundant redox-sensitive element in the upper mantle, may play a pivotal role in these processes, and constraints on its mobility and speciation in slab-derived phases are thus critical to elucidating the range of redox state conditions of subduction zones (Frost and McCammon, 2008; Kelley and Cottrell, 2009; Evans, 2012).

Iron oxides such as hematite, Fe2O3, and magnetite, Fe3O4, are by-products of serpentinisation (e.g., Carbonin et al., 2015; Debret et al., 2015), and they have been identified in seafloor metasediments (e.g., Ague et al., 2022). Consequently, their solubility may control the iron budget in slab-derived fluids and melts. To date, most experimental studies on the solubility of hematite and/or magnetite in aqueous fluids (Chou and Eugster, 1977; Doctor et al., 1980; Frantz et al., 1981; Scholten et al., 2019) and melts (Simon et al., 2004; Bell and Webster, 2015), have been conducted at moderate pressures, less than 0.4 GPa, that are not relevant for sub-arc settings. A single study of hematite solubility in H2O-NaCl fluid at 1 GPa and 800 °C by Wykes et al. (2008) reported dissolved iron contents below 0.01 mol/kg. This value implies Fe3+/Fe tot fluxes of 109 mol/year, which are three to four orders of magnitude lower than the estimated redox budget flux (55 ± 13 × 1012 mol/year; Evans, 2012). Alternatively, silica-bearing melt-like fluids have been suggested as an efficient agent for the transfer of oxidised iron (Parkinson and Arculus, 1999; Hermann et al., 2006; Kelley and Cottrell, 2009; Bénard et al., 2018) owing to its low solubility in aqueous phases (Wykes et al., 2008). Yet, the capacity of hydrous silicate melts to transport oxidised iron at sub-arc conditions remains unconstrained.

Here, we present experimental data on the solubility of hematite–magnetite assemblages in hydrous haplogranitic melts, which mimic melts produced by partial melting of subducted metasediments, to constrain their ability to transfer oxidised iron at sub-arc conditions. Combined with Mössbauer spectroscopy analysis of the recovered glasses and thermodynamic modelling, we demonstrate the higher capacity of hydrous silicate melts to mobilise oxidised iron compared to aqueous and chlorinated fluids at sub-arc conditions. The dissolution of iron oxides in slab-derived silicate melts thus provides a viable mechanism for the transfer of oxidised iron from the slab to the mantle wedge and to explain the oxidised nature of arc magmas (Kelley and Cottrell, 2009).

1. Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
2. Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
* Corresponding author (email: ctirabos@uni-muenster.de)

Received 18 August 2022 | Accepted 28 December 2022 | Published 31 January 2023
Solubility and Redox State of Iron in Hydrous Silicate Melts

A total of 16 hematite–magnetite solubility experiments were performed at 1–2 GPa and 700–950 °C (Fig. 1, Table 1, Fig. S-1, and Table S-1). Experimental and analytical details can be found in the Supplementary Information.

Measured FeO contents in the quenched glasses from the H2O + melt system (Fig. 2a) range from 0.60 ± 0.21 wt. % at 1 GPa and 700 °C to 1.96 ± 0.04 wt. % at 1 GPa and 950 °C. In the H2O-NaCl + melt system (Fig. 2b), the FeO content increases from 0.75 ± 0.08 wt. % at 1 GPa and 700 °C to 2.40 ± 0.12 wt. % at 1 GPa and 950 °C. Within error, similar FeO contents were measured in glasses quenched at 2 GPa in both pure H2O and saline systems. Hence there is no significant pressure effect on iron solubility in agreement with previous low-pressure experiments in melt-free HCl-bearing fluids (Scholten et al., 2019).

The two experimental runs performed with either magnetite or hematite in the presence of a hydrous melt phase displayed lower FeO contents in the quenched glass at 1 GPa and 900 °C compared to experiments in which both oxides were present, i.e., 1.61 ± 0.09 wt. % and 1.42 ± 0.13 wt. %, respectively (Fig. 2a). The FeO contents reported here compare well with the results from sediment melting experiments at similar conditions (e.g., Hermann and Spandler, 2008) and from natural melt inclusions in hematite–magnetite-bearing mantle xenoliths (e.g., Blatter and Carmichael, 1998). A more detailed comparison is provided in the Supplementary Information.

Mössbauer absorption spectra recorded on selected recovered glasses (i.e., with the highest FeO content) yielded Fe3+/Fe tot ratios of 0.79 ± 0.04 in the H2O + haplogranite melt system (Fig. S-2a), while a lower Fe3+/Fe tot ratio of 0.45 ± 0.07 was retrieved in the H2O-NaCl + melt system (Fig. S-2b), both at 2 GPa and 900 °C. Unbuffered experiments at 1 GPa and 900 °C showed Fe3+/Fe tot ratios of 0.64 ± 0.15 and 0.73 ± 0.22 for the magnetite-only and hematite-only experiments, respectively (Fig. S-2c and S-2d). Additional details about the coordination environment of Fe3+ in the melt structure and the two unbuffered experimental runs are discussed in the Supplementary Information (Fig. S-2, S-3, and Table S-2).

Aqueous Fluids vs. Hydrous Silicate Melts as Carriers of Oxidised Iron

We show that significant amounts of iron, preferentially as Fe3+, can be mobilised and transported by hydrous silicate melts at sub-arc conditions. To compare the relative iron transport capacity of aqueous fluids and hydrous silicate melts, we further performed equilibrium thermodynamic calculations using the DEW model (Sverjensky et al., 2014) and computed the iron content (and speciation) in the aqueous phase at run conditions (see Supplementary Information).

Thermodynamic modelling results indicate that hematite and magnetite are insoluble in H2O-only fluids at the investigated P, T, and fO2 conditions (Table S-3), with iron concentrations that are several orders of magnitude lower than those measured in the quenched glass (Fig. 3a). However, the stepwise addition of silica as Si(OH)4, following the haplogranite melt dissolution into the fluid, significantly increases the FeO content compared to the H2O-only system, due to the formation of a hydrous Fe-Si complex with stoichiometry Fe(H3SiO4)2+ (Fig. 3a).

Dissolved silicate species (Manning et al., 2010) thus provide additional ligands that enhance the mobilisation and transport of iron as previously reported for other ‘immobile’ metals, such as Zr, Ti, Nb (Audétat and Keppler, 2005; Manning et al., 2008; Wilke et al., 2012; Louvel et al., 2013) and most recently, for carbon in graphite-saturated systems (Tiraboschi et al., 2022 and references therein). In H2O-NaCl fluids, in contrast, the formation of FeCl2 complexes yields iron concentrations in the fluid in equilibrium with hematite–magnetite that are 4 orders of magnitude higher than in pure H2O (Fig. 3b and Table S-3). The addition of dissolved silica in the model further enhances the solubility of iron via the formation of Fe(H3SiO4)2+ species that, together with Cl-complexes, lead to concentrations of Fe3+ dissolved in the fluid that are up to 5 times higher compared to the NaCl-free system.

In both H2O and H2O-NaCl systems, the calculated FeO solute content in the fluid is 1 order of magnitude lower than in quenched glasses, hence indicating a higher iron transport capacity of melt compared to aqueous and saline fluids. Moreover, the Mössbauer data indicate that the higher FeO content in the quenched glass is mainly due to the presence of oxidised iron that dominates in the melt phase (Table 1 and Fig. 3).

Figure 1 Pressure and temperature conditions of experimental runs employing powders (squares) or single crystals (triangles) as starting materials. The oxygen fugacity is reported relative to the Fayalite-Magnetite-Quartz (FMQ) buffer. The dotted line denotes the critical curve in the haplogranite–H2O system (Bureau and Keppler, 1999). Solid lines represent hot subduction geothermal paths (Syracuse et al., 2010).
Taking into account the total FeO content obtained by EMP analyses (Table 1 and Table S-1) and the Mössbauer Fe\(^{3+}/\text{Fe}_{\text{tot}}\) ratio, the estimated Fe\(_2\)O\(_3\) content in the quenched glasses corresponds to 1.59 wt. % and 0.98 wt. % for the pure H\(_2\)O and H\(_2\)O-NaCl systems, respectively. The lower Fe\(_2\)O\(_3\) content in the saline system can be partially attributed to the higher abundance of Fe\(^{2+}\), due to the higher solubility of hematite and magnetite in H\(_2\)O-NaCl fluids (i.e. 0.118 mol/kg), i.e. two times the calculated solubility in the H\(_2\)O-only system (0.057 mol/kg).

Mobilisation and Transfer of Oxidised Iron at Sub-Arc Conditions

Our experimental results show that hematite and magnetite can be effectively dissolved by hydrous silicate melts and provide the first constraints of the amount of oxidised iron transferred by hydrous melts at sub-arc conditions. As the Fe\(^{3+}/\text{Fe}_{\text{tot}}\) ratio in silicate melts increases upon increasing temperature and oxygen fugacity (Wilke et al., 2002; Borisov and McCammon, 2010; Mysen and Richet, 2019), our results at 2 GPa and 900 °C (0.98–1.59 wt. % Fe\(_2\)O\(_3\)) likely represent the upper limit for Fe\(^{3+}\) transferred by hydrous melts as the temperature is higher than typical conditions for most hot subduction regimes (Fig. 1).

Applying correlations between the Fe\(^{3+}/\text{Fe}^{2+}\) ratio and the oxygen fugacity (see details in the Supplementary Information, Fig. S-4), we estimate the Fe\(_2\)O\(_3\) content in hydrous silicate melts at sub-arc conditions in hot subduction slabs, i.e. 2 GPa and 700 °C (Fig. 1), to be 0.15–0.23 wt. % and 0.05–0.08 wt. % for pure H\(_2\)O and saline systems, respectively. The amount of oxidised iron mobilised by the dissolution of hematite–magnetite assemblages in hydrous melts ranges between 0.15

Table 1 Experimental run conditions, FeO content (in wt. %) and Fe\(^{3+}/\text{Fe}_{\text{tot}}\) ratios in the quenched haplogranite glasses as determined by EMPA and Mössbauer spectroscopy, respectively.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>Run duration</th>
<th>Starting fluid</th>
<th>FeO (wt. %)</th>
<th>log(_{\text{O}_2}) (bar)</th>
<th>ΔFMQ(^*)</th>
<th>Fe(^{3+}/\text{Fe}_{\text{tot}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHM3</td>
<td>1</td>
<td>700</td>
<td>48</td>
<td>H(_2)O</td>
<td>0.60 (0.21)</td>
<td>−11.5</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>GHM6</td>
<td>1</td>
<td>700</td>
<td>48</td>
<td>H(_2)O-NaCl</td>
<td>0.75 (0.08)</td>
<td>−11.5</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>GHM1</td>
<td>1</td>
<td>800</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.04 (0.12)</td>
<td>−9.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>GHM5</td>
<td>1</td>
<td>800</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.22 (0.24)</td>
<td>−9.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>GHM2(^*)</td>
<td>1</td>
<td>800</td>
<td>72</td>
<td>H(_2)O</td>
<td>1.23 (0.06)</td>
<td>−9.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>GHM7</td>
<td>1</td>
<td>800</td>
<td>24</td>
<td>H(_2)O-NaCl</td>
<td>1.50 (0.31)</td>
<td>−9.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>GHM4</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.82 (0.11)</td>
<td>−7.1</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>GHM11</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H(_2)O-NaCl</td>
<td>2.17 (0.26)</td>
<td>−7.1</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>GM1(^*)</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.61 (0.09)</td>
<td>−</td>
<td>0.64 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>GH2(^*)</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.42 (0.13)</td>
<td>−</td>
<td>0.73 ± 0.22</td>
<td></td>
</tr>
<tr>
<td>GHM13(^*)</td>
<td>1</td>
<td>950</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.96 (0.04)</td>
<td>−6.4</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>GHM15(^*)</td>
<td>1</td>
<td>950</td>
<td>24</td>
<td>H(_2)O-NaCl</td>
<td>2.40 (0.12)</td>
<td>−6.4</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>GHM19</td>
<td>2</td>
<td>700</td>
<td>48</td>
<td>H(_2)O-NaCl</td>
<td>0.60 (0.09)</td>
<td>−11.3</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>GHM20(^*)</td>
<td>2</td>
<td>800</td>
<td>24</td>
<td>H(_2)O</td>
<td>0.96 (0.11)</td>
<td>−8.9</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>GHM9(^*)</td>
<td>2</td>
<td>900</td>
<td>24</td>
<td>H(_2)O</td>
<td>1.85 (0.18)</td>
<td>−6.9</td>
<td>4.0</td>
<td>0.79 ± 0.04</td>
</tr>
<tr>
<td>GHM10(^*)</td>
<td>2</td>
<td>900</td>
<td>24</td>
<td>H(_2)O-NaCl</td>
<td>2.07 (0.41)</td>
<td>−6.9</td>
<td>4.0</td>
<td>0.45 ± 0.07</td>
</tr>
</tbody>
</table>

Notes: ΔFMQ = log\(_{\text{O}_2}\)\(_{\text{run}}\) − log\(_{\text{O}_2}\)\(_{\text{FMQ}}\) (Fayalite + Magnetite + Quartz).

*Runs employing single crystals as starting materials. GM1 and GH2 denote runs with only magnetite or hematite (unbuffered conditions). Uncertainties (in parenthesis) given as 1 standard deviation of \(n (10 < n < 50)\) EMP analyses of the glass.

Figure 2 Experimental FeO contents (wt. %) measured by EMPA in the quenched glasses, as a function of temperature for (a) the H\(_2\)O + melt system and (b) the H\(_2\)O-NaCl + melt system.
to 1.59 wt. % (0.05 to 0.98 wt. % in saline systems) Fe₂O₃ for the range of hot subduction slab geotherms. The dissolution of ‘fluid-insoluble’ iron oxides in hydrous slab-melts may thus have a significant contribution to the iron budget and redox capacity of the slab flux and should be considered when estimating the redox state of hot subduction zones.

Despite the simplicity of the system investigated here, our results have direct implications for subduction environments where melting of hematite and magnetite-bearing metasediments occur (Ague et al., 2022) or where hydrous silicate melts produced by metasomatism slices interact with serpentine in subduction mélanges (Marschall and Schumacher, 2012). Hydrous silicate melts are thus efficient agents for the mobilisation and transfer of oxidised iron from the slab to the mantle wedge, ultimately contributing to the oxidation of the arc magma source.

Acknowledgements

This work was supported by the German Research Foundation (DFG) through grants TI 1078/2-1 and SA 2585/4-1. C.T. acknowledges a mobility grant from the Italian Society of Mineralogy and Petrography (SIMP). S. Flemetakis and Z. Liu are thanked for their assistance in the laboratory, M. Trospich and B. Schmitte for sample preparation, and D. Sverjensky and S. Tumiati for help with the thermodynamic modelling. Katy Evans and Antoine Bénard are acknowledged for helpful reviews and Horst Marschall for editorial handling.

Editor: Horst R. Marschall

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2304. © 2023 The Authors. This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www. geochemicalperspectivesletters.org/copyright-and-permissions.

Figure 3 Calculated hematite–magnetite solubility (DEW model, Sverjensky et al., 2014) in (a) aqueous and (b) saline fluids at 1 GPa, and comparison with experimental results in silicate melts. Dark grey diamonds: FeO content (mol/kg) in the H₂O-only and H₂O-NaCl system. Light grey diamonds: FeO (mol/kg) in Si(OH)₄-bearing fluids (mol/kg, pink boxes). Circles (H₂O-only) and triangles (H₂O-NaCl) denote experimental FeO contents in hydrous silicate melts (mol/kg) from this study. Error bars are smaller than the symbol size. The black double-ended arrow shows the effect of oxidised iron. Coloured fields denote the dominance of the indicated solute species in the fluid.

References

Preferential mobilisation of oxidised iron by slab-derived hydrous silicate melts

C. Tiraboschi, C. McCammon, A. Rohrbach, S. Klemme, J. Berndt, C. Sanchez-Valle

Supplementary Information

The Supplementary Information includes:

- Materials and Methods
- Calculation of Fe$^{3+}$ Transferred by Hydrous Melts in Subduction Zones
- Tables S-1 to S-3
- Figures S-1 to S-4
- Supplementary Information References

Materials and Methods

Starting materials and piston cylinder experiments

Natural hematite and magnetite, either as a fine-grained powder (1:1 molar ratio) or as single crystals, were employed as starting materials, together with a synthetic haplogranite glass and a source of fluid.

The haplogranite glass employed here, $\text{Na}_{0.56}\text{K}_{0.38}\text{Al}_{0.95}\text{Si}_{5.19}\text{O}_{12.2}$, is silica-rich ($\text{Si}/(\text{Si+Al}) = 0.86$) and slightly peralkaline ((Na + K)/Al = 1.13; Na/K = 0.9) as shown in Table S-1 (Ardia et al., 2008, 2014).

Experiments were conducted in an end-loaded piston cylinder apparatus at WWU Münster with two different fluid systems: i) H_2O-only or ii) H_2O-NaCl solution with a concentration of 1.5 m NaCl (\sim8 wt. % NaCl, \sim4.9 wt. % Cl) to approximate the salinity of island-arc setting slab-derived fluids (e.g., Kent et al., 2002). Variable amounts of fluid were added to the experimental charges (Table S-1) to guarantee hydrous conditions of the coexisting melt at run conditions, i.e. below the critical curve for the haplogranite-H_2O system (Bureau and Keppler, 1999; Fig. 1). Run duration varied from 24 hours for high-temperature experiments (i.e. 900 °C) to 72 hours in low-temperature runs (i.e. 700 °C) to ensure equilibration (see discussion below).
The oxygen fugacity conditions were constrained by the simultaneous presence of magnetite and hematite (HM buffer), which is between −11.3 (2 GPa, 700 °C, DFMQ 3.8) and −6.4 (1 GPa, 950 °C, DFMQ 4.8) expressed as logf_O_2 (Table 1). Fixing the oxygen fugacity conditions brings some important constraints to our experimental strategy, as at buffered conditions the only iron exchange in the experimental capsule would derive from the dissolution process, and not from redox reactions occurring between hematite and magnetite. Moreover, the imposed redox conditions are comprised into the range of oxygen fugacities expected in subduction mélanges (see Cannào and Malaspina, 2018 and ref. therein).

Oxygen fugacities at the experimental conditions are expressed as logf_O_2 and were calculated employing the software package Perple_X (Connolly, 1995) and the thermodynamic dataset of Holland and Powell (1998). In the experimental runs in which only magnetite or hematite are present the oxygen fugacity is unconstrained.

Starting materials (i.e., hematite, magnetite, glass, and fluid) were loaded in gold capsules (3 mm outer diameter, ~7 mm length), mounted on steel support stored at ~20 °C, and welded shut, to avoid fluid loss during welding. Capsules were loaded in a MgO–Pyrex–talc assembly. The temperature was measured through W$_9$Re$_3$–W$_{75}$Re$_{25}$ thermocouples and is considered accurate within ±10 °C. Pressure calibration of the apparatus is based on the quartz-coesite transition (Bose and Ganguly, 1995) and the MgCr$_2$O$_4$ + SiO$_2$ = MgSiO$_3$ + Cr$_2$O$_3$ reaction (Klemme and O’Neill, 1997), and a friction correction of -13% was applied to the nominal pressure. Pressures are considered accurate to 0.01 GPa. In all runs, fragments of the original hematite and/or magnetite were recovered from the capsule after quench, demonstrating saturation during the experiment. Experiments performed at buffered conditions showed no formation of new crystals of magnetite or hematite. All runs showed excess fluid upon capsule puncturing and the presence of water in the recovered glass fragment was confirmed by Raman spectroscopy.

Attainment of equilibrium in the experimental runs

Attainment of equilibrium conditions was confirmed by time series experiments performed at the same pressure, temperature, and oxygen fugacity conditions, with run durations ranging from 24 to 72 hours. For instance, experiments performed within 24 hours (GHM1) and 72 hours (GHM5) at 1 GPa and 800 °C display similar values of FeO in the quenched glass within error (Table S-1), showing no major difference even for shorter experimental runs. Moreover, experiments performed at similar P, T, and f_O_2 conditions employing either powders or single-crystals of hematite and magnetite yield comparable FeO values (e.g., GHM5 and GHM2, Table S-1), demonstrating little effect of the grain size on FeO content as well as equilibration during the experiments.

Achievement of redox equilibrium in our experiments is expected due to the long run duration, i.e. above 24 hours, which is significantly longer than the redox equilibration times of 3–10 hours reported for hydrous metaluminous or peralkaline melts with approximately 1–3 wt. % of total FeO at 800 °C and 0.2 GPa by Gaillard et al. (2002). Moreover, the redox ratio of iron and the hyperfine parameters of ferric and ferrous iron determined by Mössbauer spectroscopy in the recovered glasses should not be affected by fast quenching rates (Mysen, 2006).

Analytical techniques

Major element concentrations of quenched glasses, hematite, and magnetite were determined with a 5-spectrometer JEOL JXA 8530F electron microprobe (EMP) at the Institute of Mineralogy, WWU Münster. Analyses of the quenched glasses were performed with an accelerating voltage of 15 keV and a beam current of 10 nA, with variable beam sizes ranging from 5 to 20 μm on homogenous parts of the glass, i.e. free from Fe oxides grains and vapour bubbles (Fig. S-1a,b). The homogeneity of the glasses was checked by repeated analyses in different areas of the sample and by optical examination to confirm the absence of microscopic mineral phases. The signal from Na was monitored during the measurements and no significant loss was observed. Samples major elements analyses are summarised in Table S-1.

Mössbauer absorption spectra were collected at Bayerisches Geoinstitut (BGI), University of Bayreuth on samples GHM9, GHM10, GH2, and GM1, which present high FeO content. Glass pieces were mounted on plastic film using clear nail varnish to form a mosaic of approximately 2 mm diameter and 1 mm thick. This corresponds to a Mössbauer thickness of roughly 4 mg Fe/cm2, which is close to the optimum for these compositions. Spectra were collected in
transmission mode on a constant acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co point source in a 12 μm Rh matrix with active dimension of 500 × 500 μm2. The velocity scale was calibrated with Fe foil. Spectra were collected at room temperature over a velocity scale of ± 5 mm/s with measuring times of approximately 7 days each. Spectra were fitted using MossA software (Prescher et al., 2012).

Thermodynamic modelling

We employed the DEW model (Sverjensky et al., 2014; Huang and Sverjensky, 2019; Sverjensky, 2019) coupled with the Fortran code EQ3NR (Wolery, 1992) to calculate the solubility of hematite and magnetite in H$_2$O, H$_2$O-NaCl fluids and fluids equilibrated with a dissolved silica species. The DEW model employs the Helgeson-Kirkham-Flowers (HKF) equations of state for aqueous species (Helgeson et al., 1981; Shock and Helgeson, 1988, 1990; Tanger and Helgeson, 1988; Shock et al., 1989, 1997) together with revised predictive correlations between the equation of state coefficients and the standard partial molal properties of aqueous species (Facq et al., 2014; Sverjensky et al., 2014; Sverjensky, 2019) to calculate the apparent standard partial molal Gibbs free energies of aqueous species at high pressures and temperatures. Equilibrium constants are then incorporated in the Fortran code EQ3NR (Wolery, 1992) to compute aqueous speciation and solubility models, providing total dissolved concentrations of each element and the saturation state of the associated fluid with respect to the minerals in the system.

The first set of solubilities was calculated from 700 to 1000 °C and from 1 to 2 GPa considering the H$_2$O-only and the H$_2$O-NaCl systems. The input file was constructed in order to have hematite and magnetite coexisting at fixed oxygen fugacity conditions. The second set of calculations was performed by adding appropriate amounts of Si(OH)$_4$, to account for the presence of a silicate melt and to evaluate the possible influence of dissolved silica on iron transport. Results from modelling are reported in Table S-3.

Since to our knowledge, no experimental data are available for the solubility of haplogranite melts in H$_2$O and H$_2$O-NaCl fluids, the composition of the aqueous fluid was estimated from experimental data (see Louvel et al., 2020) on albite dissolution in H$_2$O (Manning et al., 2010; Wohlers et al., 2011). Silica contents in the fluid were exponentially extrapolated to higher temperatures (i.e. 900 °C) following Manning et al. (2010), which showed a strong increase in the solute content at near-solidus conditions in the system albite + paragonite + quartz + H$_2$O, possibly due to the presence of more polymerized species (Newton and Manning, 2008).

Mössbauer absorption results

The Mössbauer spectra recorded on the four investigated samples are shown in Figure S-2 and the results are presented below. The Mössbauer spectra fitting parameters, including the centre shift (CS) and quadrupole splitting (QS) (Fig. S-3), as well as the calculated Fe$^{3+}$/Fetot ratios are summarised in Table S-2.

GHM9

The spectrum (Fig. S-2a) can be fit to two doublets with Voigt lineshape (Gaussian distribution of Lorentzians). The green doublet is assigned to Fe$^{3+}$ and the blue doublet to Fe$^{2+}$. The blue doublet has a centre shift of 1.16, which is higher than expected for a glass. This can be attributed to its presence as precipitates from the fluid phase. The bulk value of Fe$^{3+}$/Fetot can be calculated from the relative areas as 0.79±0.04.

GHM10

The spectrum can be fit to two doublets as sample GHM9, with the addition of a sextet (Fig. S-2b). Only the inner four lines of the sextet are observed due to small velocity scale, but all positions are consistent with hematite. The two doublets have the same hyperfine parameters (centre shift and quadrupole splitting) as those in sample GHM9 (Table S-2), indicating that Fe$^{2+}$ is mainly present as precipitates from the fluid phase. The bulk value of Fe$^{3+}$/Fetot considering the doublets only and excluding the hematite from the calculation is 0.45±0.07.
GH2

The prominent doublet (dark green) has parameters consistent with tetrahedral Fe$^{3+}$ (Fig. S-2c). A broad doublet (blue) is consistent with Fe$^{3+}$ but with higher coordination. A broad doublet with higher centre shift and quadrupole splitting (medium green) is assigned to Fe$^{2+}$, also in this case attributed to the presence of precipitates. Magnetic peaks could be fit to the data and parameters correspond to hematite. The calculated Fe$^{3+}$/Fe$_{\text{tot}}$ is retrieved from relative areas excluding the contribution of hematite and corresponds to 0.73±0.22.

GMI

Doublets assigned to glass components are similar to those in the previous spectrum except that the Fe$^{2+}$ doublet is noticeably more intense compared to GH2 (Fig. S-2d). There is a broad absorption (blue) that could arise from a weak magnetic interaction, for example very small particles of ferric iron oxide (around a few tens of nanometres grain size). The Fe$^{3+}$/Fe$_{\text{tot}}$ is calculated from relative areas, excluding the contribution of the small particles of iron oxides, and corresponds to 0.64±0.15.

Overall, the data show that Fe$^{3+}$ is mainly present in the melt structure, probably in more than one coordination environment. Parameters reported in Table S-2 are consistent with Fe$^{3+}$ in tetrahedral coordination and possibly higher values (IV or VI, or a mixture of both). On the other hand, Fe$^{2+}$ seems to be present for the most part as precipitates from the aqueous fluid, as shown by high values of centre shift (CS) and quadrupole splitting (QS) (Fig. S-3). However, due to the Fe$^{2+}$ broad absorption, it is not possible to exclude the presence of Fe$^{2+}$ also in the melt structure.

Unbuffered experimental runs

The two unbuffered experiments (Fig. S-1c,d) resulted in slightly lower Fe$^{3+}$/FeO$_{\text{tot}}$ ratios: 0.73±0.22 for the quenched glass in equilibrium with hematite and 0.64±0.15 for the glass in equilibrium with magnetite at 1 GPa and 900 °C in the H$_2$O + melt system. The difference is mainly ascribable to the Fe$^{2+}$ content, as the calculated amount of Fe$^{3+}$ in the glass is similar for both experiments (i.e. 1.10 wt. % for magnetite + hydrous melt, and 1.15 wt. % for hematite + hydrous melt experiment, see Table S-1). However, due to the low amount of total iron in the system, which leads to a significant error in the retrieved Fe$^{3+}$/Fe$_{\text{tot}}$ ratio obtained by Mössbauer spectroscopy, it is difficult to assess if the two unbuffered experiments equilibrated at the same Fe$^{3+}$/Fe$^{2+}$ ratio.

These results highlight the importance to investigate the dissolution process at buffered conditions, to avoid redox reactions between hematite and magnetite, which could influence the amount of iron mobilised in the system. For instance, in the hematite-only experiment, Mössbauer absorption spectra indicate the presence of Fe$^{2+}$, which likely derives from a redox reaction. Moreover, some redox reactions probably also occur in the magnetite-only experiment, which showed some reaction rims suggesting the formation of hematite (Fig. S-1d).

Calculation of Fe$^{3+}$ Transferred by Hydrous Melts in Subduction Zones

The experimental results presented were further employed to provide constraints on the amount of Fe$^{3+}$ transferred by hydrous melts from hematite and magnetite, which is crucial information to evaluate the redox budget of subduction zones (Evans, 2006, 2012; Evans and Tomkins, 2011).

Here we considered the Fe$^{3+}$ content at 2 GPa and 900 °C (sample GHM9 and GHM10) in both systems: H$_2$O + melt and H$_2$O-NaCl + melt to constrain the Fe$^{3+}$ fluxes associated with hematite–magnetite dissolution in hydrous melts at subduction zone conditions.

The Fe$_2$O$_3$ content in the quenched glass was calculated from the Fe$^{3+}$/Fe$_{\text{tot}}$ ratio derived from the Mössbauer absorption spectra and from the total FeO content obtained by electron microprobe analyses (Table 1 and Table S-1). In the H$_2$O + melt system, the Fe$_2$O$_3$ corresponds to 1.59 wt. % while in the H$_2$O-NaCl + melt system equals 0.98 wt. % (Fig. S-4).
Because the iron redox ratios in silicate melts are linearly proportional to the oxygen fugacity conditions on a logarithmic scale (Kress and Carmichael, 1991; Wilke et al., 2002; Botcharnikov et al., 2005) we can extrapolate the possible Fe$^{3+}$ content in hydrous melt in equilibrium with magnetite and hematite to lower temperature conditions, in order to approximate conditions compatible with hot subduction geotherms paths (e.g., Syracuse et al. 2010) as shown in Fig. 1.

We considered two possible correlations between the Fe$^{3+}$/Fe$^{2+}$ ratio and the oxygen fugacity. The first one is derived from the empirical equation of Kress and Carmichael (1991) and it has been calculated from experimental data at 2 GPa and 900 °C. The second curve slope considered is derived from experimental Mössbauer absorption data of hydrous silicate melts from Wilke et al. (2002), obtained at 0.5 GPa and temperatures of 850 and 950 °C. The two different linear correlations define two areas, which represent the possible Fe$^{3+}$/Fe$^{2+}$ ratios depending on the oxygen fugacity conditions. Since the simultaneous presence of hematite and magnetite in the system define the f_O at fixed pressure and temperature, it is possible to calculate the possible Fe$_2$O$_3$ content of hydrous melts in equilibrium with hematite and magnetite to lower temperature conditions, more compatible with a hot subducting slab geotherm (see Fig. 1).

In the H$_2$O + melt system the expected Fe$^{3+}$ content calculated ranges from 0.15 to 0.23 wt. %, up to the measured values of 1.59 wt. % at 2 GPa and 900 °C (f_O = −6.9, ΔFMQ 4.0). In the H$_2$O-NaCl + melt system the retrieved Fe$^{3+}$ ranges from 0.05 to 0.08 wt. % at 2 GPa and 700 °C (f_O = −11.5, ΔFMQ 3.8), reaching values of 0.98 wt. % at 2 GPa and 900 °C (f_O = −6.9, ΔFMQ 4.0). These values provide the amount of oxidised iron mobilised from hematite and magnetite dissolution by hydrous silicate melts at conditions compatible with a hot subduction slab.

Comparison with previous studies

The FeO concentrations in hydrous haplogranite glasses retrieved here compare well with the results from experimental studies of sediment melting at sub-arc conditions (Herrman et al., 2006; Herrmann and Spandler, 2008). These experiments, conducted at slightly higher pressures, i.e. 2.5 GPa, report FeO contents in the quenched hydrous glass ranging from 1.04 wt. % (16 wt. % H$_2$O) at 750 °C to 1.26 wt. % at 800 °C (10 wt. % H$_2$O). For comparison, we report a FeO content of 0.96 wt. % at 2 GPa, 800 °C in the H$_2$O-only system (9.39 wt. % H$_2$O).

Moreover, our results are also consistent with FeO contents determined in natural melt inclusions from mantle xenoliths. Although mantle xenoliths from the subarc upper mantle are quite rare, few examples can be considered for comparison. For instance, hornblende peridotite xenoliths from central Mexico (Blatter and Carmichael, 1998) show oxygen fugacity comprises between ΔFMQ 1.5 and 2.4, locally up to 4 in presence of hematite and magnetite. The FeO content in the silicate glass, i.e. 1.02 wt. %, is compatible with our results at similar pressure and temperature conditions (i.e. 1.5 GPa and 800 °C). Similar FeO content, 1.27 wt. %, and 8.1 wt. % H$_2$O, has been also measured in melt inclusions from mantle xenoliths from the Avacha volcano in Kamchatka (Ionov et al., 2011).

Geological environments

The investigated experimental system represents a simplified subduction slab setting, in which Fe-oxides interact with a haplogranitic composition. The Fe-source is exclusively represented by magnetite and hematite, which are common in subduction zone settings, for instance in serpentinites (e.g., Carbonin et al., 2015; Debret et al., 2015) and in metasediments (e.g., Tumiati et al., 2015; Ague et al., 2022). Our results thus have direct implications for two possible geological environments where interactions between hydrous (haplo)granitic melts with magnetite–hematite occurs. First, the melt is produced by magnetite and hematite-bearing metasediments. Metasediments constitute a layer thick up to 400 m (Van Keken et al., 2011) above the altered oceanic crust, and often contain oxidised Fe$^{3+}$-bearing sedimentary detritus (Ague et al., 2022 and ref. therein). Highly oxidised metasediments from exhumed subduction complexes have been observed in the Alps (Tumiati et al., 2015) and in other locations (see Cannà and Malaspina, 2018). Recently Ague et al. (2022) showed that highly oxidised metasedimentary rocks, containing hematite and magnetite, have the capacity of oxidising the fluid released from the slab. The granitic melt generated at these conditions would be in equilibrium with magnetite and hematite, consequently, it will efficiently dissolve Fe from these phases, and would transfer the oxidised signature directly to the mantle wedge. Second, the hydrous silicate melt is generated by metasediment slices present in the subduction mélangé (Marschall and Schumacher, 2012; Nielsen and Marschall, 2017),
and interacts with serpentine slices. Similarly to the first environment, the resulting melt will then reach the mantle wedge and efficiently transfer Fe$^{3+}$ to the source of arc magmas.
Supplementary Tables

Table S-1 Major element compositions (in wt. %) of the starting haplogranitic composition (HGG) and quenched glasses determined by electron microprobe. Uncertainties are reported below the average values for each glass as 1 standard deviation of n ($10 < n < 50$) analyses performed on the glass. H$_2$O concentrations were not analysed; the reported values are obtained by subtracting the total of major element analyses from 100. FeO* and Fe$_2$O$_3$* refer to the calculated amounts of Fe$^{2+}$ and Fe$^{3+}$ considering the Fe$^{3+}$/Fe$_{tot}$ ratios obtained by Mössbauer spectroscopy.

<table>
<thead>
<tr>
<th></th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>run time (h)</th>
<th>starting fluid</th>
<th>fluid (wt. %)</th>
<th>Na$_2$O</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>SiO$_2$</th>
<th>K$_2$O</th>
<th>CaO</th>
<th>Cl</th>
<th>FeO</th>
<th>TiO$_2$</th>
<th>Cr$_2$O$_3$</th>
<th>MnO</th>
<th>Total</th>
<th>H$_2$O</th>
<th>FeO*</th>
<th>Fe$_2$O$_3$*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.52</td>
<td>0.00</td>
<td>11.73</td>
<td>78.53</td>
<td>4.47</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>99.37</td>
<td></td>
</tr>
<tr>
<td>GHM3</td>
<td>1</td>
<td>700</td>
<td>48</td>
<td>H$_2$O</td>
<td>19.37</td>
<td>3.34</td>
<td>0.01</td>
<td>10.72</td>
<td>71.29</td>
<td>3.85</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>89.88</td>
<td></td>
</tr>
<tr>
<td>GHM6</td>
<td>1</td>
<td>700</td>
<td>48</td>
<td>1.5 m H$_2$O-NaCl</td>
<td>27.39</td>
<td>3.73</td>
<td>0.00</td>
<td>11.46</td>
<td>68.76</td>
<td>4.28</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>89.11</td>
<td></td>
</tr>
<tr>
<td>GHM1</td>
<td>1</td>
<td>800</td>
<td>24</td>
<td>H$_2$O</td>
<td>41.94</td>
<td>2.94</td>
<td>0.01</td>
<td>10.82</td>
<td>71.34</td>
<td>3.92</td>
<td>0.04</td>
<td>0.01</td>
<td>1.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>90.17</td>
<td></td>
</tr>
<tr>
<td>GHM7</td>
<td>1</td>
<td>800</td>
<td>24</td>
<td>1.5 m H$_2$O-NaCl</td>
<td>21.43</td>
<td>2.59</td>
<td>0.02</td>
<td>10.74</td>
<td>72.17</td>
<td>4.52</td>
<td>0.04</td>
<td>0.11</td>
<td>1.50</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>91.70</td>
<td></td>
</tr>
<tr>
<td>GHM5</td>
<td>1</td>
<td>800</td>
<td>72</td>
<td>H$_2$O</td>
<td>18.10</td>
<td>3.37</td>
<td>0.05</td>
<td>10.54</td>
<td>71.59</td>
<td>3.95</td>
<td>0.02</td>
<td>0.00</td>
<td>1.22</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>90.82</td>
<td></td>
</tr>
<tr>
<td>GHM2*</td>
<td>1</td>
<td>800</td>
<td>72</td>
<td>H$_2$O</td>
<td>17.83</td>
<td>0.82</td>
<td>0.04</td>
<td>11.18</td>
<td>72.96</td>
<td>3.47</td>
<td>0.11</td>
<td>0.01</td>
<td>1.23</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>89.87</td>
<td></td>
</tr>
<tr>
<td>GHM4</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H$_2$O</td>
<td>23.86</td>
<td>3.13</td>
<td>0.02</td>
<td>10.53</td>
<td>70.38</td>
<td>3.89</td>
<td>0.04</td>
<td>0.00</td>
<td>1.82</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>89.90</td>
<td></td>
</tr>
<tr>
<td>GHM11</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>1.5 m H$_2$O-NaCl</td>
<td>27.65</td>
<td>2.70</td>
<td>0.01</td>
<td>10.70</td>
<td>72.70</td>
<td>3.70</td>
<td>0.03</td>
<td>0.15</td>
<td>2.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>92.23</td>
<td></td>
</tr>
<tr>
<td>GM1*</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H$_2$O</td>
<td>31.97</td>
<td>2.89</td>
<td>0.03</td>
<td>10.21</td>
<td>71.04</td>
<td>3.79</td>
<td>0.02</td>
<td>0.00</td>
<td>1.61</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>89.68</td>
<td></td>
</tr>
<tr>
<td>GH2*</td>
<td>1</td>
<td>900</td>
<td>24</td>
<td>H$_2$O</td>
<td>47.06</td>
<td>2.50</td>
<td>0.02</td>
<td>10.81</td>
<td>72.96</td>
<td>3.66</td>
<td>0.01</td>
<td>0.01</td>
<td>1.42</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>91.44</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>ID</td>
<td>Depth</td>
<td>Type</td>
<td>H,O</td>
<td>NaCl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHM13*</td>
<td>1</td>
<td>950</td>
<td>24</td>
<td>H,O</td>
<td>18.69</td>
<td>0.39</td>
<td>0.01</td>
<td>0.11</td>
<td>0.70</td>
<td>0.24</td>
<td>0.01</td>
<td>0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GHM15*</td>
<td>1</td>
<td>950</td>
<td>24</td>
<td>1.5 m H2O-NaCl</td>
<td>30.77</td>
<td>2.83</td>
<td>0.01</td>
<td>0.17</td>
<td>0.96</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHM19</td>
<td>2</td>
<td>700</td>
<td>48</td>
<td>1.5 m H2O-NaCl</td>
<td>27.81</td>
<td>3.96</td>
<td>0.01</td>
<td>0.22</td>
<td>1.03</td>
<td>0.54</td>
<td>0.02</td>
<td>0.07</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHM20*</td>
<td>2</td>
<td>800</td>
<td>24</td>
<td>H,O</td>
<td>21.76</td>
<td>2.02</td>
<td>0.02</td>
<td>0.45</td>
<td>0.19</td>
<td>0.01</td>
<td>0.05</td>
<td>0.09</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.05</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHM9*</td>
<td>2</td>
<td>900</td>
<td>24</td>
<td>H,O</td>
<td>23.56</td>
<td>2.87</td>
<td>0.02</td>
<td>1.69</td>
<td>0.32</td>
<td>0.02</td>
<td>0.02</td>
<td>0.11</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHM10*</td>
<td>2</td>
<td>900</td>
<td>24</td>
<td>1.5 m H2O-NaCl</td>
<td>29.29</td>
<td>2.25</td>
<td>0.09</td>
<td>0.99</td>
<td>0.19</td>
<td>0.01</td>
<td>0.01</td>
<td>0.18</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.20</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S-2
Hyperfine parameter values derived from fits of Mössbauer absorption spectra. CS: centre shift; FWHM: full width at half maximum; Int: relative area; QS: quadrupole splitting; BHF: hyperfine magnetic splitting.

<table>
<thead>
<tr>
<th></th>
<th>CS (mm/s)</th>
<th>Error (mm/s)</th>
<th>FWHM (mm/s)</th>
<th>Error (mm/s)</th>
<th>Int</th>
<th>Error</th>
<th>QS (mm/s)</th>
<th>Error (mm/s)</th>
<th>BHF (T)</th>
<th>Error (T)</th>
<th>Fe<sup>3+</sup>/Fe<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>GHM9</td>
<td>Fe<sup>3+</sup></td>
<td>0.33</td>
<td>0.02</td>
<td>0.64</td>
<td>0.09</td>
<td>0.79</td>
<td>0.04</td>
<td>0.94</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>2+</sup></td>
<td>1.16</td>
<td>0.03</td>
<td>0.34</td>
<td>0.08</td>
<td>0.21</td>
<td>0.04</td>
<td>2.46</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GHM10</td>
<td>Fe<sup>3+</sup></td>
<td>0.31</td>
<td>0.11</td>
<td>0.65</td>
<td>-</td>
<td>0.31</td>
<td>0.07</td>
<td>0.84</td>
<td>0.23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>3+</sup> in hematite</td>
<td>0.33</td>
<td>0.04</td>
<td>0.21</td>
<td>0.19</td>
<td>0.31</td>
<td>0.11</td>
<td>-0.21</td>
<td>-</td>
<td>50.58</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>2+</sup></td>
<td>1.14</td>
<td>0.05</td>
<td>0.37</td>
<td>0.19</td>
<td>0.38</td>
<td>0.08</td>
<td>2.50</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GH2</td>
<td>Fe<sup>3+</sup></td>
<td>0.33</td>
<td>0.04</td>
<td>0.19</td>
<td>0.12</td>
<td>0.10</td>
<td>0.10</td>
<td>-0.21</td>
<td>-</td>
<td>50.4</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>3+</sup></td>
<td>0.33</td>
<td>0.02</td>
<td>0.30</td>
<td>0.11</td>
<td>0.24</td>
<td>0.25</td>
<td>0.57</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>3+</sup> in hematite</td>
<td>0.33</td>
<td>0.17</td>
<td>0.92</td>
<td>0.46</td>
<td>0.42</td>
<td>0.27</td>
<td>0.86</td>
<td>0.33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>2+</sup></td>
<td>1.14</td>
<td>0.29</td>
<td>0.92</td>
<td>0.47</td>
<td>0.24</td>
<td>0.22</td>
<td>2.48</td>
<td>0.59</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GM1</td>
<td>Fe<sup>3+</sup></td>
<td>0.3</td>
<td>0.4</td>
<td>3.3</td>
<td>8.8</td>
<td>0.59</td>
<td>0.31</td>
<td>0</td>
<td>-</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>3+</sup></td>
<td>0.11</td>
<td>0.02</td>
<td>0.35</td>
<td>0.07</td>
<td>0.18</td>
<td>0.18</td>
<td>0.56</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>3+</sup></td>
<td>0.38</td>
<td>0.16</td>
<td>0.49</td>
<td>0.37</td>
<td>0.08</td>
<td>0.24</td>
<td>0.72</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fe<sup>2+</sup></td>
<td>1.07</td>
<td>0.16</td>
<td>0.79</td>
<td>0.18</td>
<td>0.14</td>
<td>0.15</td>
<td>2.45</td>
<td>0.40</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table S-3 Solubility of hematite and magnetite in H$_2$O and H$_2$O-NaCl fluids at 1–2 GPa and from 700 to 1000 °C calculated with the DEW model. Solubility values are given as mol/kg of Fe. Si(OH)$_4$ contents are also given as mol/kg.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>H$_2$O</th>
<th>H$_2$O-NaCl</th>
<th>H$_2$O</th>
<th>H$_2$O-NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 GPa</td>
<td>2 GPa</td>
<td>1 GPa</td>
<td>2 GPa</td>
</tr>
<tr>
<td>700</td>
<td>5.48E-07</td>
<td>1.10E-05</td>
<td>0.004</td>
<td>0.010</td>
</tr>
<tr>
<td>800</td>
<td>2.97E-07</td>
<td>5.30E-06</td>
<td>0.008</td>
<td>0.018</td>
</tr>
<tr>
<td>900</td>
<td>1.77E-07</td>
<td>2.81E-06</td>
<td>0.016</td>
<td>0.032</td>
</tr>
<tr>
<td>1000</td>
<td>1.21E-07</td>
<td>1.70E-06</td>
<td>0.028</td>
<td>0.053</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>H$_2$O</th>
<th>H$_2$O-NaCl</th>
<th>H$_2$O-NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 GPa</td>
<td>2 GPa</td>
<td>added</td>
</tr>
<tr>
<td>700</td>
<td>0.013</td>
<td>0.043</td>
<td>0.076</td>
</tr>
<tr>
<td>800</td>
<td>0.014</td>
<td>0.050</td>
<td>0.095</td>
</tr>
<tr>
<td>900</td>
<td>0.014</td>
<td>0.057</td>
<td>0.118</td>
</tr>
<tr>
<td>1000</td>
<td>0.014</td>
<td>0.064</td>
<td>0.149</td>
</tr>
</tbody>
</table>
Supplementary Figures

Figure S-1 Backscattered electron images of representative run products: (a) quenched hydrous silicate melt ($P = 1$ GPa; $T = 950$ °C, sample GHM13); (b) magnified detail of quenched hydrous silicate melt shown in Fig. S-1a. The bright spots are Fe-bearing precipitates, localised in vapor bubbles; (c) dissolution feature on a hematite crystal ($P = 1$ GPa, $T = 900$ °C, sample GH2); (d) dissolution features on a magnetite crystal ($P = 1$ GPa, $T = 900$ °C, sample GM1).
Figure S-2 Mössbauer absorption spectra (a) sample GHM9 ($P = 2$ GPa, $T = 900$ °C) (b) sample GHM10 ($P = 2$ GPa, $T = 900$ °C) (b) sample GH2 ($P = 1$ GPa, $T = 900$ °C) (b) sample GM1 ($P = 1$ GPa, $T = 900$ °C).
Figure S-3 Centre shift versus quadrupole splitting values derived from fits of the Mössbauer data.
Figure S-4 Oxygen fugacity (reported as logf_O_2) plotted versus Fe$^{3+}$/Fe$^{2+}$ ratios. Fe$^{3+}$/Fe$^{2+}$ ratios determined from Mössbauer spectra at 2 GPa and 900 °C are denoted by the stars. Long dashed line: redox ratios after Kress and Carmichael (1991) calculated at 2 GPa and 900 °C. Short-dashed lines: redox ratio from Wilke et al. (2002) at 0.5 GPa. The coloured areas correspond to the predicted Fe$^{3+}$/Fe$^{2+}$ ratio in the H$_2$O + melt and the H$_2$O-NaCl + melt system extrapolated from experimental data at 2 GPa and 900 °C to lower temperature conditions. The reported numbers correspond to the amount of Fe$_2$O$_3$, expressed in wt. %.
Supplementary Information References

Helgeson, H.C., Kirkham, D.H., Flowers, G.C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and

