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Multiple lines of evidence suggest that garnet may play an important role in the
generation of arc magmas, either as a residual phase during mantle melting or sub-
sequently during crystallisation differentiation. Moreover, garnet stability is strongly
pressure sensitive, and therefore garnet fractionation can serve as an indirect indica-
tor of fractionation pressure. Here, we introduceMnO/MgO ratios as a compositional
proxy uniquely sensitive to garnet fractionation. We show that primary mantle melts
have nearly invariant MnO/MgO ratios that are in equilibrium with mantle olivine.
Therefore, the subsequent evolution of this ratio is only a function ofmagmatic differ-
entiation. Further, based on compiled experimental studies, garnet is the only phase
that crystallises from basaltic magmas and preferentially partitions MnO relative to

MgO.Thus, limited increases inMnO/MgOratios duringmagmatic differentiation, asweobserve inmost continental arcs, are strong
evidence for early garnet fractionation and require that crystallisation differentiation begins at or below the Moho of many arcs.
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Introduction

The fractionation of garnet from subduction zone magmas is
hypothesised to play a critical role in several fundamental arc
processes: delamination of garnet-rich, density unstable cumu-
lates may be critical to the production and stabilisation of
continental crust (Jagoutz and Behn, 2013), while fractionation
of ferrous iron-rich garnet may contribute to the generation of
oxidised, calc-alkaline arc magmas (Tang et al., 2018). These
hypotheses are supported by observations from exhumed arc
lower crustal sections and xenoliths, which commonly include
garnet-rich lithologies (Ducea and Saleeby, 1996; Jagoutz, 2010),
and by experimental studies that show that garnet is a stable
phase in hydrous magmas at typical arc lower crustal conditions
(Alonso-Perez et al., 2009; Ulmer et al., 2018). However, primary
garnet phenocrysts are rare in typical arc lavas, making the
ubiquity of garnet fractionation at modern arcs difficult to assess.

As an alternative approach, many researchers have
highlighted the distinctive heavy rare earth element (HREE)-
enriched trace element signature of garnet and argued that
garnet must play an important role in the petrogenesis of evolved
magmas with complementary HREE depletions. Early applica-
tions of this approach focused on Archean tonalite-trondhjemite-
granodiorite suites (TTGs) and modern dacites with elevated
Sr/Y and La/Yb ratios and argued that these magmas represent
partial melts of garnet-bearing subducted crust (Drummond and
Defant, 1990). More recently, trace element ratios including Sr/Y,
Dy/Yb, and La/Yb were proposed as proxies for crustal thickness
(Chapman et al., 2015; Profeta et al., 2015), based on the interpre-
tation that they reflect increased extents of differentiation at pres-
sures high enough to stabilise garnet (e.g., Davidson et al., 2007).

These two approaches use the same trace element ratios to infer
distinct processes at different locations within subduction zone
systems. Therefore, in the absence of additional observations,
interpretations of these ratios alone are necessarily non-unique.
In this paper, we introduce melt MnO/MgO ratios as an alterna-
tive indicator of garnet fractionation based on two findings:
primary mantle melts have comparatively uniform MnO/MgO
ratios; and the Mn-Mg partition coefficient between garnet
(gt) andmelt, defined as KD

Mn-Mg= (Mngt/Mnmelt)/(Mggt/Mgmelt),
is greater than 1, unique among typical early fractionating
phases.

Variability of Subduction Zone Primary
Melts

Proxies for garnet differentiation and crustal thickness using
trace element ratios, including Sr/Y and La/Yb, have been devel-
oped primarily for application to relatively evolved lavas. The
rationale for these proxies is that fractionation of garnet-rich
cumulates or, equivalently, extraction of partial melts from
garnet-rich residues, causes depletions in HREEs, resulting in
differentiated melts with elevated trace element ratios. While
garnet fractionationmay generate this signal, inferring this proc-
ess based on only the values of these ratios in differentiatedmag-
mas requires independent knowledge of the derivative magma’s
parental melt composition. Without this information, it is not
possible to attribute elevated trace element ratios in differenti-
ated magmas to garnet fractionation rather than to inherited
parental magma compositions.
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A recent compilation of primary arc lava compositions
(Schmidt and Jagoutz, 2017) highlights this problem. These
samples have compositions in equilibrium with typical mantle
peridotite, and thus have necessarily undergone minimal differ-
entiation within the crust. However, these lavas display a wide
range in both Sr/Y and La/Yb ratios that showno correlationwith
crustal thickness (Fig. 1). In contrast, both ratios are strongly cor-
related with primary melt type, regardless of crustal thickness or
upper plate type: tholeiitic magmas have uniformly low Sr/Y and
La/Yb ratios, while calc-alkalinemagmas span awide range. This
large range in primary arc magma incompatible trace element
ratios reflects several factors, including variable contributions
from the slab (e.g., Elliott, 2004) and degree of prior mantle
depletion (e.g., Kelley et al., 2006).

During differentiation, a range of processes beyond garnet
fractionation can further modify these ratios. Plagioclase accu-
mulation generates magmas with elevated Sr and Sr/Y ratios
(Vukadinovic, 1993), while amphibole fractionation can produce
magmaswith elevated La/Yb ratios (Davidson et al., 2007). These
additional processes are much less sensitive to pressure com-
pared to garnet fractionation, and instead are dominantly sensi-
tive to magmatic H2O contents. Given the range of primary melt
compositions and these additional confounding processes, it is
unlikely that the trace element ratios of any single suite of differ-
entiated arc magmas provide meaningful estimates of crustal
thickness.

MnO/MgO Ratios in Primary Arc Melts

In contrast to incompatible trace element ratios, the behaviour
of most compatible elements in mantle melts is controlled by
melting reactions in the mantle wedge. Typically, these ele-
ments and their ratios vary predictably in response to changes
in mantle melting regime (e.g., Grove et al., 2013), while some
canonical ratios, such as Mg# (molar Mg/(Mgþ Fe)), display a
relatively invariant range reflective of equilibrium with mantle
olivine. In Figure 2a, we show that the MnO/MgO ratios of pri-
mary arc magmas are also tightly clustered and, based on a
recent model of olivine-melt Mn/Mg partitioning (Blundy et al.,
2020), are consistent with control by equilibration with mantle
olivine (Fig. 2b). These primarymelt compositions are inconsis-
tent with garnet-presentmantle melting, as this process produ-
ces melts with distinctively low MnO/MgO ratios (≤0.01;
Walter, 1998). This is consistent with observations that most
garnet is exhausted at moderate extents of melting at typical
sub-arc mantle conditions (≤11 wt. % melt at 3 GPa; Kushiro,
1996), and with final mantle equilibration at pressures lower
than the spinel-garnet transition (Perrin et al., 2016).

These primary lavas show a wide range of incompatible
trace element ratios indicative of variable slab contributions
(Fig. 1). However, their MnO/MgO ratios are uncorrelated with
these trace element ratios (Fig. S-1) and show negligible evi-
dence for control by slab contributions: subducted sediments
have elevatedMnO/MgO ratios compared to the sub-arc mantle
(Plank, 2014), and this elevated ratio is inherited by slab-derived
melts or fluids despite equilibrating with garnet-rich residue
(Schmidt et al., 2004). The apparent contradiction between
incompatible trace element ratios and the MnO/MgO ratios is
resolvedwith a simplemass balance argument: unlike incompat-
ible trace elements, slab derived fluids and melts typically con-
tain an order of magnitude less MnO and MgO than the final
melt in equilibrium with the mantle, and thus can exert only
minimal control on the eventual MnO/MgO ratios of these
melts. The small fraction of the primary melts with elevated
MnO/MgO ratios (Fig. 2a)may reflect contributions fromunusu-
ally MnO-rich slab sediments, although these melts may also
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Figure 1 Variations in the trace element ratios of calc-alkaline
and tholeiitic primary arc melts compared to SiO2 (wt. %). In all
panels, symbol colours are based on local arc thickness calculated
from CRUST1.0 (Laske et al., 2013), and empty symbols show
tholeiitic lavas. Mean values are shown with solid black lines and
1 standard deviation is marked with dashed black lines. (a) Sr/Y,
with equivalent crustal thickness from empirical model in
Chapman et al. (2015) shown on right hand y-axis. (b) Chondrite
normalised La/Yb, with equivalent crustal thickness calculated
using Equation 2 in Profeta et al. (2015) shown in right hand y-axis.
(c)Variations in chondrite normalisedDy/Yb ratios. REE ratios in (b)
and (c) normalised to chondritic values fromMcDonough and Sun
(1995).
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have undergone limited fractionation of olivine ± clinopyroxene
(see below).

Methods and Data Compilation

The previous section demonstrates that mantle-derived melts
show a restricted range of MnO/MgO ratios that are reflective
of equilibration with mantle olivine. To characterise the evolu-
tion of this ratio during crystallisation differentiation, we com-
piled Mn-Mg mineral-melt partitioning data from published
experimental studies, focusing on studies that include garnet-
bearing experiments. As MnO is commonly included in experi-
mental bulk compositions and is a standard electron microprobe
analyte, we were able to compile large datasets of Mn/Mg
partition coefficients for all typical experimental phases. The full
list of compiled experimental references is available in the
Supplementary Information References.

Although commonly measured, MnO is frequently
present at <0.1 wt. % concentrations in experimental melts and
is only rarely an emphasis of experimental studies (cf. Balta et al.,
2011). Further, in experiments conducted at relatively low tem-
peratures, garnets can be strongly zoned. Due to these analytical
complications, propagated relative uncertainties on experimen-
tal Mn/Mg partition coefficients (KD

Mn-Mg) in many experiments,
and particularly at lower temperatures and pressures relevant
to garnet fractionation, are >50 % (1 standard deviation). To
address these limitations, we reanalysed garnet and melt com-
positions from two previous experimental studies relevant to
garnet crystallisation at crustal conditions (Alonso-Perez et al.,

2009; Ulmer et al., 2018). We used laser ablation ICP-MS to
remeasure melt MnO contents and made new electron microp-
robe measurements of garnet rim major element contents from
25 experiments. Detailed descriptions of analytical methods are
available in the Supplementary Information, and the new analy-
ses are presented in Table S-1. All compiled garnet partitioning
data are shown in Figure 3d. As our primary focus here is on the
role of garnet in subduction zone magmas, we subsequently
exclude experiments conducted at pressures >5 GPa or those
containing significant amounts of CO2 or where the standard
deviation uncertainty (1σ) on garnet KD

Mn-Mg is ≥50 %.

Results and Discussion

Our compiled partitioning data shows that garnet is unique
among commonly fractionating minerals: most silicate phases
are characterised by KD

Mn-Mg consistently <1, and typically
<0.5 (Fig. 3a–c), while garnet KD

Mn-Mg shows considerably more
variation but is consistently higher than other phases (≥1; Fig. 3d).
In contrast to non-garnet silicates, Fe-Ti oxides also typically have
KD

Mn-Mg> 1 (Fig. S-2). However, these oxides incorporate much
smaller amounts of MnO and MgO compared to garnet and are
usually less abundant, and thus their fractionation has a compa-
ratively smaller influence on melt compositions. To better con-
strain the effect of garnet fractionation, we modelled the
garnet-melt KD

Mn-Mg data using an Arrhenius type function
(Fig. 3e). We explored models with additional parameters includ-
ing melt and garnet compositions, and fO2, but did not find that
incorporating extra variables improved model performance.
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Additional experiments may reveal other variables that influence
garnet KD

Mn-Mg. However, given the robust model fit presented
here, we expect other variables to be secondary to the effects of
changing temperature and pressure.

The distinctive partitioning behaviour of garnet makes
MnO/MgO ratios ideal for isolating the impact of garnet frac-
tionation. Unlike MnO/FeO ratios, which were previously used
to identify distinct mantle melt source regions (e.g., Balta et al.,
2011), the evolution of MnO/MgO ratios are insensitive to var-
iations in magmatic fO2: while Mn can occur in multiple valence
states, the MnO-Mn3O4 fO2 buffer is more than 4 log units
above QFM, and thus Mn3þ is negligible in typical arc magmas
(O’Neill and Pownceby, 1993). In comparison, the partitioning
of MnO from total iron will inevitably introduce fO2 sensitivity
due to the significant quantities of Fe3þ present at typical
magmatic fO2 conditions. Additionally, apart from fO2 effects,
MnO and FeO aremuch less strongly partitioned bymost silicate
phases, significantly complicating the ability to isolate the effects
of garnet fractionation with MnO/FeO ratios.

Using our model for garnet KD
Mn-Mg, we can estimate how

melt MnO/MgO ratios evolve in response to fractionation of
various phases. We find that at pressures <2 GPa, the garnet
KD

Mn-Mg is>1 for anymagma below 1300 °C. At conditionsmore
typical to arc lower crust, the garnet KD

Mn-Mg increases to values
>2, and thus pure garnet fractionation will cause melt MnO/
MgO ratios to decrease. The effect of garnet fractionation is fur-
ther amplified when comparing the effect of garnet fractionation
in MnO/MgO to SiO2. As garnet has much lower SiO2 contents
than typical arc melts, garnet fractionation will cause rapid
increases in melt SiO2 while hindering increases in MnO/
MgO ratios, a distinctive trend in comparison to most other
phases that crystallise from arc melts.

The impact of garnet fractionation is evident when exam-
ining the SiO2 contents andMnO/MgO ratios of typical arcmelts
(Fig. 4). Clear differences are immediately apparent between
relatively thin-crusted island arcs and continental arcs with
thicker upper plates. Melts in both settings originate near the
primitive arc compositions shown in Figure 2, but island arc

magmas rapidly evolve to significantly higherMnO/MgOvalues,
consistent with initial olivineþ clinopyroxene dominated frac-
tionation (Fig. 4a). Lavas from the westernmost Aleutian Arc
and from Matthew and Hunter Volcanoes in Vanuatu are
notable exceptions to the general island arc trend and are high-
lighted in Figure 4a. Erupted lavas at these locations are gener-
ally evolved and have very lowMnO/MgO ratios, likely requiring
the involvement of garnet in their petrogenesis. This is consistent
with independent evidence that supports a slab-derived origin
for these magmas (Yogodzinski et al., 2015; McCarthy et al.,
2022), and suggests that in rare instances arc lavas retain a
garnet-source signature without complete re-equilibration with
the mantle wedge.

In contrast to the typical island arc trend, increases in
MnO/MgO values at continental arcs are much more limited
(Fig. 4b), requiring significant garnet fractionation in addition
to olivine ± clinopyroxene. It is particularly noteworthy that this
divergent behaviour occurs during early fractionation of basaltic
melts. Amphibole and/or Fe-Ti oxides also have low to very low
SiO2 contents and moderate to high KD

Mn-Mg, and thus can also
limit the extent of increases in MnO/MgO ratios (Figs. 4, S-2).
However, these phases do not crystallise from typical arc melts
until cooling to temperatures below at least∼1050 °C and cannot
be responsible for the divergent behaviour observed in basaltic
compositions. Further, the minimum pressures at which garnet
is stable increase for less evolved magmas (Fig. S-3). Early
garnet fractionation from basaltic liquids therefore requires that
garnet fractionation begins at pressures ≥1.5 GPa, or equiva-
lently ≥50 km depth. Our current data do not allow us to distin-
guish between ubiquitous garnet fractionation and mixing
between deep garnet fractionating magmas and more shallowly
differentiating magmas. However, either scenario requires that
at least some magmas undergo garnet fractionation at or below
the Moho of many continental arcs.

The widespread fractionation of garnet-rich cumulates at
or below the Moho in modern continental arcs is difficult to
verify with geophysical techniques, as these cumulates have
densities and seismic velocities comparable to or greater than
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sub-arc mantle (Müntener and Ulmer, 2006). Instead, fractiona-
tion of these cumulates near the base of the crust may contribute
to the commonly poorly defined seismic Moho at many arcs.
Finally, while both calc-alkaline (Fe-depletion) and tholeiitic
(Fe-enrichment) differentiation sequences are observed at most
arcs, calc-alkaline trends appear dominant in the thickest arcs
(Chiaradia, 2014). This observation, combined with the findings
here, suggests an important role for garnet fractionation in the
generation of some calc-alkaline differentiation sequences (e.g.,
Tang et al., 2018). However, calc-alkaline sequences are produced
by extensive crystallisation differentiation that includes other
phases such as FeTi oxides and amphibole. The stability of these
phases is controlled by variables including fO2 andmagmatic H2O
contents, and thus a range of variables and fractionating assemb-
lages likely combine to drive calc-alkaline differentiation (Sisson
and Grove, 1993; Sisson et al., 2005; Zimmer et al., 2010).

Conclusions

On a global scale, trace element ratios such as Sr/Y and La/Yb
appear to correlate with arc crustal thickness, and thus may be
broadly reflective of varying extents of garnet fractionation.
However, applying these proxies to individual magmatic suites
can lead to incorrectly inferring garnet fractionation in magmas
that instead reflect significant slab components and/or plagio-
clase accumulation.We show thatMnO/MgO ratios avoid many
of these limitations and provide a powerful tool to illustrate the
role of garnet fractionation. Arc primary melts show a restricted
range ofMnO/MgO ratios that are consistent withmelts in equi-
librium with mantle olivine. Further, during early stages of
fractionation, garnet is the only crystallising phase that does
not drive magmas to evolve to higher MnO/MgO ratios. This
diagnostic behaviour appears to be quite common in thicker
continental arcs, suggesting that crystallisation differentiation
with or without increasing fO2 begins for many continental
arc magmas at or below the Moho.
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