Inferred pyrite growth via the particle attachment pathway in the presence of trace metals

J.M. Domingos¹, E. Runge¹, C. Dreher², T.-H. Chiu², J. Shuster³, S. Fischer², A. Kappler²-⁴, J.-P. Duda¹, J. Xu⁵-⁶, M. Mansor²-⁵*

Abstract

The morphology of pyrite has been used to infer ancient redox states and biogenicity. However, the influence of trace metals on pyrite morphology is poorly understood. Through batch synthesis experiments, we demonstrate that bioessential trace metals (Co, Cu, Mo, Ni, Zn) accelerate pyrite formation. The first precipitate, FeS₂, transformed to an intermediate greigite phase and to pyrite with increasing time and temperature. Trace metals either facilitated polysulphide formation or precipitated as nanoparticles that can serve as nuclei for pyrite growth, depending on the initial metal concentration. Despite varying precipitation rates, the final pyrite morphologies were unaffected. Various morphologies including tabular precipitates (<150 nm), octahedral (300–1500 nm) and rose-like particles (1000–3000 nm) were observed. This size–shape particle continuum was interpreted as stages of pyrite growth via particle attachment. This process could be important in explaining variations in the mineral’s reactivity (e.g., defects), isotopic and trace metal distributions, and morphologies (e.g., framboids) for applications in paleo-proxies, environmental research and biosignatures.

Introduction

Pyrite is a widespread mineral that is involved in a variety of biogeochemical processes with implications for interpreting Earth’s past, present and future (Huang et al., 2017). Natural pyrite typically adopts either a euhedral or framboidal (raspberry-like) morphology. Euhedral pyrite is proposed to form via slow growth on pre-existing pyrite, while framboids are proposed to form under fast nucleation conditions in close association with Fe sulphide precursors, such as mackinawite (FeS) and greigite (Fe₃S₄) (Raiswell, 1982; Butler and Rickard, 2000). In the geological record, high abundances of framboids have been interpreted as indicators of euxinic conditions in water columns (Wilkin et al., 1996; Rickard, 2019). The striking morphology of framboids and their association with organic matter have led to their interpretation as biosignatures, despite the various reports of framboid synthesis via abiotic pathways (Ohtuji and Rickard, 2005).

The continuum model for pyrite growth (Sawlowicz, 1993) has received increasing support from growing textural, geochemical and isotopic evidence (Lin et al., 2016, 2017; Liu et al., 2022). In this model, pyrite of different morphologies and sizes reflects cyclic growth stages of small euhedral particles aggregating to form framboids that recrystallise over time into a larger euhedral particle. This continuum model mirrors the particle attachment pathway in that mineral growth occurs via aggregation and recrystallisation of smaller particles. This pathway explains defects in crystal structures, distributions of trace metals and isotopes, and unusual particle morphologies in nature (De Yoreo et al., 2015). This pathway has been demonstrated for pyrite synthesised at >100 °C (Hunger and Benning, 2007; Li et al., 2011; Gong et al., 2013), but not at lower temperatures.

Recent studies have investigated how trace metals impact pyrite formation rates (Table 5–1). Comparatively, the effects of trace metals on pyrite morphology are under-constrained. Here, we tested the influence of five bioessential trace metals (Co, Cu, Mo, Ni, Zn) on pyrite formation. These bioessential trace metals are common impurities in pyrite and play key roles in Earth’s biogeochemical evolution (Robbins et al., 2016). Their effects on pyrite formation need to be constrained in order to disentangle factors that can affect the utility of pyrite morphologies as environmental proxies and biosignatures.

Fe Sulphide Transformation Sequence

Iron sulphides were synthesised in the presence of 3 mM Fe²⁺, 6 mM Na₂S and 30 mM elemental sulphur (S⁰) in 50 mM HEPES buffer (pH 7). Two sets of experiments were performed and

1. Sedimentology & Organic Geochemistry, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
2. Geochemistry, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
3. Tuebingen Structural Microscopy Core Facility, University of Tuebingen, 72076 Tuebingen, Germany
4. Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72076 Tuebingen, Germany
5. NanoGeoBio, Department of Geological Sciences, The University of Texas at El Paso, TX 79968, El Paso, USA
6. School of Molecular Sciences, Arizona State University, AZ 85278, Tempe, USA

* Corresponding author (email: muammar.muammar-bin-mansor@uni-tuebingen.de)
term Set-1 (97 % N2, 3 % H2 headspace) and Set-2 (100 % N2), respectively (details in SI Methods; Table S-2). In both sets, the addition of Na2S to Fe(II) led to the immediate formation of fine black precipitates identified as a disordered mackinawite-like phase (FeS₃am) based on a single broad reflection with d-spacings of 5.2–5.3 Å via X-ray diffraction (XRD) (Fig. 1a; Table S-3), and characteristic sheet-like aggregate structures under scanning electron microscopy (SEM) (Fig. 2a) (Csákberényi-Malasics et al., 2012).

Despite following the same methods, Set-1 and Set-2 experiments demonstrated differences in greigite contents, pyrite formation rates and the extent of pyritisation. In Set-1 experiments, FeS₃am transformed to greigite and eventually to pyrite with increasing time (up to 14 days) and temperature (25–80 °C). FeS₃am was no longer detectable by XRD after 14 days of incubation at 80 °C, but greigite was still not fully transformed to pyrite (Fig. 1a). Comparatively, in Set-2 experiments, FeS₃am was completely transformed to pyrite within 3–7 days of incubation at 80 °C, with no greigite detected. Nonetheless, greigite was likely present at low relative abundances because minerals attracted to hand magnets were observed (Table S-3). These magnetic minerals were associated with black coatings around S0 particles.

Samples containing greigite and pyrite from Set-1 experiments were analysed using SEM, which revealed morphologies classified into four categories: tabular (<150 nm), spherical aggregates (100–250 nm), octahedral (300–1500 nm) and rose-like particles (1000–3000 nm) (Fig. 2). Treatment with 6 M HCl led to dissolution of the tabular particles, which we interpret as HCl-soluble greigite given its morphological similarity to previous lab-synthesised greigite (Csákberényi-Malasics et al., 2012; Mansor et al., 2019). The other particles (spherical aggregates, octahedra and “roses”) were interpreted as pyrite since they did not dissolve in HCl (Voelz et al., 2019). In Set-2 experiments, where greigite was not detected by XRD, tabular particles were rarely observed whilst other particles were common. Occasionally, acicular particles (100–5000 nm length) were also observed from day 3 onwards and identified via energy dispersive X-ray spectroscopy (EDS) to be rich in Fe and oxygen, suggestive of Fe(III) oxyhydroxides (Fig. S-1).

Overall, Set-1 and Set-2 experiments exhibited similar transformation sequences of FeS₃am to greigite to pyrite with increasing time and temperature, consistent with previous studies (Hunger and Benning, 2007; Mansor and Fantle, 2019). Alternative pathways without a greigite intermediate are possible (see Sanden et al., 2021) but seem unlikely in our experiments. We suggest that the differences in pyrite formation rates (∼10 × faster in Set-1) are caused by the headspace composition (3 % H2 vs. pure N2). The lack of H2 in Set-2 experiments likely led to a more oxidising condition, which accelerated pyrite formation, consistent with the detection of trace Fe(III) oxyhydroxides (SI Discussion). Differences in headspace gas composition should be considered for experimental studies on pyrite.

Influence of Trace Metals on Pyrite Formation

Prior to Na2S addition, trace metals (Co, Cu, Mo, Ni, Zn) were added to Set-1 and Set-2 experiments to obtain metal:Fe ratios of 1:10² and 1:10³, respectively, to determine their effects on pyrite formation. These ratios represent the broad range of environments (e.g., low temperature sediments, acid mine drainage, hydrothermal vents) in which natural pyrite can form (Von Damm et al., 1985; Shaw et al., 1990; Allman et al., 2021).

From the low-metal setups (1:10² ratio), XRD analysis suggested that all trace metals accelerated pyrite formation after 14 days of incubation at 80 °C. The ratio of pyrite/greigite increased in the following order: no-metal < Mo < Ni < Cu < Zn < Co, although it must be noted that the ratios overlap within error (Fig. 1b). We were unable to determine if any accelerating effects occurred in the high-metal setups (1:10³) given the unexpectedly rapid pyrite formation within Set-2 experiments. In both experimental sets, stronger magnetism was observed in the presence of Mo compared to other metals.

Trace metals were proposed to influence pyrite formation via either: (1) formation of metal-rich nanoparticles that serve as nuclei, (2) complexation or redox reactions that affect polysulphides reactivity and formation, and S(−II) and Fe(II) oxidation.

![Figure 1](https://doi.org/10.7185/geochemlet.2318)
or (3) stabilisation of FeS precursors via coprecipitation or adsorption (Table S-1). To test the first two possibilities, we repeated the no-metal, low-metal (30 nM metals) and high-metal (30 μM) setups with the omission of Fe and monitored the formation of nanoparticles and polysulphides at 80 °C.

In the no-metal and low-metal setups, no precipitates formed and a slight yellow tinge indicative of polysulphides was observed (Fig. 3a). The polysulphide spectra obtained by UV-VIS spectroscopy generally increased in intensity with time with two peaks observed at 275 and 314 nm. At day 1, higher polysulphide peaks were observed in the presence of Co, Cu, Ni and Zn relative to the no-metal setup (Fig. 3c–d; S-2). After day 8, however, polysulphides were elevated only in the presence of Co, while the other metals showed no increase or even a slight decrease compared to the no-metal setup. High polysulphides with Co correlated with increased pyrite formation rate (Fig. 1b), suggesting that the interaction between this metal and polysulphides may play a role in accelerating pyrite formation.

In the high-metal setups, grey or colourless precipitates were formed with all trace metals except for Mo. The yellow polysulphide tinge was evident in the presence of Mo, Cu and Zn but was obscured by the presence of colloidal nanoparticles in the presence of Ni and Co (Fig. 3b). Polysulphide intensities increased with higher trace metal concentrations with the exception of Mo. High Mo concentration induced an additional peak at 470 nm corresponding to tetrathiomolybdate (MoS$_4^{2-}$) (Erickson and Helz, 2000). The highest polysulphide intensities at day 14 were observed in the presence of high Co concentration, followed by Ni, Cu and Zn (Fig. 3c–d). The amount of polysulphide formed was likely influenced by varying availability of H$_2$S and S0 after metal sulphide precipitation. All the metals tested in this study were proposed to form polysulphide complexes (Rickard and Luther, 2006), with Co known to enhance polysulphide conversions in lithium-sulphur batteries (Liu et al., 2021). The interactions between these metals and polysulphides and their impact on biogeochemistry are currently poorly known.

The tentative accelerating effects of Mo and Ni on pyrite formation observed in this study are consistent with previous studies (Table S-1). Mo is also known to promote greigite formation (Mansor and Fantle, 2019; Miller et al., 2020), which could explain the lower pyrite/greigite ratio observed in the presence of Mo compared to other trace metals. In contrast, other studies demonstrated that Co and Ni (Swanner et al., 2019) and Mo

Figure 2 Representative SEM micrographs suggestive of growth via particle attachment. (a–c) Transformation of mackinawite to tabular greigite to spherical aggregates of tabular particles. (d) The arrow denotes a potential transformation from spherical aggregates to pyrite octahedra. (e) Close association between spherical aggregates (microframboids) that are recrystallising to form pyrite octahedra. (f) Colloidal pyrite octahedra (centre) with a rough surface and porous structure. (g) Micrometre-sized pyrite “rose” (yellow arrow) surrounded by smaller pyrite octahedra. The transformation mechanism may be related to skeletal growth.

Geochem. Persp. Let. (2023) 26, 14–19 | https://doi.org/10.7185/geochemlet.2318
Baya et al. (2022) inhibited pyrite formation. Differences in metal:Fe ratios and synthesis conditions (e.g., pH and formation pathways) between studies likely led to differences in how specific trace metals affect pyrite formation (SI Discussion). Nevertheless, our results clearly show that trace metals influence polysulphide chemistry and form metal-rich nuclei that may affect pyrite formation.

Despite differences in precipitation rates, the presence of trace metals had little influence on pyrite morphologies (Fig. S-3). Spherical aggregates, octahedral and rose-like particles interpreted as pyrite were present in all samples with no systematic correlation with precipitation rate. Therefore, we conclude that pyrite morphologies were unaffected by trace metal loading. Other factors, such as aging time, S/Fe ratio, organic

Figure 3 (a–b) Pictures of Fe-free setups after 8 days of incubation at 80 °C. Yellow tinge indicates the presence of polysulphides. Precipitates (grey or colourless) are observed in some high-metal setups. (c–d) Bar charts of the polysulphide peak intensities at (c) 275 nm and (d) 314 nm at Day 1, 8 and 14. Polysulphide intensities increase with time and with higher metal concentrations.

Figure 4 (a) Schematic of pyrite formation via particle attachment, showing skeletal growth and twinning between octahedral and rose-like particles (generated in Blender 3.2.2) and (b–d) the potential implications to the environment.
matter and biological activities, should be experimentally studied to determine their influence on pyrite morphologies and how these affect subsequent geological interpretations.

Particle Attachment Pathway

Detailed SEM analyses revealed two striking features: (1) particles existed in a continuum of size and shape, and (2) many of the larger particles had rough surface textures that indicate growth via aggregation of smaller particles with varying degrees of recrystallisation, similar in appearance to mesocrystals (Sturm and Giflen, 2016). Similar surface features have been observed before and interpreted as screw dislocations (Wang and Morse, 1996; Butler and Rickard, 2000). We instead interpret these combined features imaged across multiple experiments as evidence for the particle attachment pathway (Fig. 2, 4) and propose the following transformation sequences. Initially, nanometer-scale FeS\textsubscript{am} precipitated and transformed to tabular greigite particles (<150 nm). The tabular particles, perhaps in combination with nano-scale FeS\textsubscript{am} particles, acted as primary units that attached together, forming larger aggregates (<100–250 nm). The aggregates tended to become less rounded and showed signs of recrystallisation towards particles with sharp edges, eventually forming octahedral particles (300–1500 nm). Pyrite containing multiple layers of flat particles and twinned developed into rose-like particles (1000–3000 nm). This morphological diversity was the rarest type observed, and it was more common in Set-2 compared to Set-1 experiments. The developmental link between the rose-like particles to other smaller particles was less clear. We propose that as particle attachment proceeded on octahedral pyrite, preferential stabilisation of the (111) faces are amplified, leading to a skeletal structure (Fig. 4), similar to those observed previously for ZnS (Xu et al., 2016). The skeletal crystals continue to grow driven by higher attachment rates along the edges (Salas et al., 2021) until they develop into a rose-like structure.

To our knowledge, this is the first time that pyrite formation via particle attachment has been described at <100 °C, leading to micro-framboidal formation. In situ real-time microscopy observations will be crucial to confirm and describe the exact steps of this pathway. Studies aimed at investigating the subsequent effects on the reactivity and stability of pyrite grains, as well as the distribution of isotopes and trace metals, will help to constrain the potential implications to environmental proxies and biosignature interpretation (Fig. 4).

Acknowledgements

This study was supported by the DFG (SPP 1833, Emmy Noether Programme, 1450/3-2, DU 1450/7-1, JPD; INST 37/1027-1 FUGG, AK) and the German Excellence Strategy of the Federal and State Governments (EXC2124, 390838134; FUGG, AK) and the German Excellence Strategy of the German Science Foundation (DFG) under grant no. 390838134. This study was supported by the DFG (SPP 1833, Emmy Noether Programme). Additional support was provided by the German Science Foundation (DFG) under grant no. 390838134.

References

Gong, M., Kirkeby, A., Ren, S. (2013). Symmetry-defying iron pyrite (FeS\textsubscript{am}) nanocrystals through oriented attachment. Scientific Reports 3, 1–6. https://doi.org/10.1038/srep02092

