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Eclogite is a minor mantle lithology, present in subducted slivers in cratonic roots.
Mantle eclogites carryO and C isotopic signatures from surface organic and inorganic
carbon and also are modified by reaction with fluids in the lithosphere. One third of
the diamonds mined worldwide are sourced from mantle eclogites, and individual
eclogite xenoliths contain up to 20 vol. % diamond. It is critically important to under-
stand where the diamond carbon comes from, and how the diamonds form, for
insights on the carbon cycle, diamond exploration, and processes in the lithospheric
mantle. Few samples and methods are available to constrain diamond formation in
eclogites; in this work we focus on oxygen isotopes in eclogitic garnets. New analyses
of garnet/majorite found as inclusions in the Cullinan diamonds reveal a statistically
significant systematic difference between δ18O in garnet associated, and unassoci-
ated, with diamond. This contrast persists between garnet from diamondiferous

and barren eclogite xenoliths and cannot be due to shielding of diamond inclusions from equilibrating with the common mantle
values of δ18O. We propose that diamond-forming metasomatic reactions triggered by carbonatitic fluids may contribute up to
1.5 ‰ to the shift of δ18O to higher values in eclogitic diamondiferous paragenesis, but cannot fully account for the observed
difference of 2.5 ‰.
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Introduction

Eclogite, a high grade garnet (Grt)-clinopyroxene (Cpx) rock
metamorphosed from the mafic crust, is the most diamondifer-
ous mantle lithology. Diamond concentrations in mantle eclo-
gite can be orders of magnitude higher than the concentration
of diamonds in kimberlite – the rock from which they are mined.
Over the past 40 years, the oxygen isotope composition (δ18O)
of eclogite has become one of the most powerful indicators of
its crustal origin in the cratonic mantle (Schulze et al., 2003),
together with stable isotopes of C, N and S, and radiogenic
isotopes (Pearson et al., 2003; Jacob, 2004). Diamond growth,
however, is envisioned as a process overprinting the recycled
shallow eclogite protolith. Crustal protoliths for the eclogite do
not necessarily imply crustal sources for its diamonds, which
could inherit shallow C and O, or could be introduced to the
eclogite from mantle fluids. A knowledge of diamond formation
in eclogites is critically important to unravel the carbon cycle and
deep mantle processes. Diamond formation is considered to be
partly metasomatic, as suggested by diamond distribution in
eclogites (Taylor and Anand, 2004), δ13C core-to-rim patterns
(Smart et al., 2011) and correlations of O isotopes with trace

element indicators of metasomatism (Gréau et al., 2011; Huang
et al., 2012). Diamond precipitates from mantle C-bearing fluids
percolating upward and experiencing Raleigh fractionation
(Stachel and Luth, 2015; Riches et al., 2016). Possible effects of
metasomatic diamond formation on δ18O of eclogitic minerals
may be especially notable for diamondiferous parageneses.
Our goal is to quantify these δ18O to separate out the signatures
of shallower crustal alteration from the changes introduced from
deeper-seated diamondiferous fluids.

It has been noticed that garnet and clinopyroxene in dia-
mondiferous eclogites are higher in δ18O than their respective
phases in barren eclogites (Pearson et al., 2003). The difference
was explained by the origin of garnet in diamondiferous assemb-
lages from the shallow, more altered part of the oceanic crust
where δ18O is higher (McCulloch et al., 1981; Alt et al., 1986;
Ickert et al., 2013). This study aims to extend the comparison
to eclogitic inclusions in diamonds and make it more statistically
robust. In the last 20 years, advances in measurements of
O isotopes and new kimberlite discoveries created an abundance
of new data. A new summary on δ18O in garnet from diamond-
iferous and barren parageneses is long overdue. Here we
confirm the distinction between δ18O of garnet equilibrated
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and unequilibrated with diamond and assess how much of this
distinction can be assigned to diamond-friendly metasomatism.

Samples, Methods and Results

We studied diamond inclusions (DIs) from Cullinan Mine
(Premier kimberlite) individual raw diamonds. The inclusions
are associated with mafic eclogitic and majorite-bearing subli-
thospheric parageneses. They are derived from a wide interval
of temperatures (T) and pressures (P) of 5.5–7.5 GPa from the
lithosphere and 10.5–13.5 GPa from the sublithospheric mantle
(Korolev et al., 2018a). Here we report major element, δ18O, and
P-T data for 42 non-touching Grt-Cpx pairs and 8 majorites
(Supplementary Information; Table S-5). Analysed δ18O compo-
sition of garnet ranges from þ5.4 to þ10.2 ‰ and covers the
oxygen isotope composition of majorites worldwide (þ6.0 to
þ9.4 ‰; Burnham et al., 2015; Ickert et al., 2015).

This new dataset of O isotopes in eclogitic garnet DIs ena-
bles statistical comparison with global datasets. The most
notable pattern is revealed by a comparison of δ18O in garnet/
majorite associated with diamond (DIs and diamondiferous
eclogites) and garnet in barren eclogites. Statistical t tests deter-
mine that the average δ18O and its distribution in garnet from
diamondiferous eclogites are distinctly higher than the barren
eclogites from the Kaapvaal craton with probability >99.99 %
(Supplementary Information). The δ18O compositions of the
garnet/majorite inclusions from the Cullinan diamonds are
higher than the δ18O of garnet in Kaapvaal barren eclogites
(Fig. 1a). While only 24 % of Cullinan DIs demonstrate
δ18O<þ6 ‰ and values <þ5 ‰ are completely absent
(Fig. 1a, Table S-5), 67.4 % of garnets from the barren eclogites
have δ18O<þ6.0‰. Diamondiferous eclogites globally show a
narrow δ18O distribution with a higher mode than the Kaapvaal
barren eclogites (Fig. 1b).

Discussion

Several explanations may account for the contrasting δ18O in
barren and diamondiferous eclogitic parageneses. The latter
may have formed deeper (>150 km), at higher pressures and
temperatures. A suggested positive covariation of δ18Ogrt with
equilibration temperature for Lace eclogites may hint at a wider
T-δ18Ogrt correlation in the deep mantle as heavy oxygen may
favour garnet with increasing T and P (Aulbach et al., 2017).
To test for this, we compiled data for eclogite xenoliths of the
Kaapvaal craton (Fig. S-3a) and worldwide occurrences (Fig.
S-4). The absence of δ18O correlations of garnet DIs with the
P-T of their formation observed in Cullinan (Fig. S-3) is repeated
globally. A comparison of the δ18O inGrt-Cpx pairs from eclogite
xenoliths worldwide equilibrated at the widest range of temper-
atures (650–1500 °C) shows that there is no dependence
between δ18Ogrt or δ18Ocpx and temperature (Fig. S-4). The dif-
ference between δ18Ogrt and δ18Ocpx is constant (±0.87 ‰, 2σ)
and does not correlate with temperature (Fig. S-4a). The
contrasting δ18O compositions in barren and diamondiferous
parageneses do not relate to pressure, which was predicted by
Clayton et al. (1975). Only a small proportion of CullinanMg-rich
DIs demonstrate a local δ18O-T correlation (Supplementary
Information; Fig. S-2b). Thus, higher pressures and temperatures
of diamondiferous eclogites and DIs cannot account for the
heavier oxygen in their garnets.

An alternative explanation invokes diffusive buffering of
oxygen by the surrounding mantle to explain the δ18O contrast
between garnet in barren (xenoliths) and diamondiferous eclogitic
parageneses (DIs and xenoliths). DI garnet is shielded from

re-equilibration with the ambient mantle oxygen (δ18O=þ5.5 ±
0.4‰;Mattey et al., 1994), while the “exposed” garnet in xenoliths
is not. Only silicate inclusions protected by diamonds retained the
18O-enriched compositions (Schulze et al., 2003; Burnham et al.,
2015; Ickert et al., 2015) formed via low temperature seawater alter-
ation of the shallowest levels of the former oceanic crust
(McCulloch et al., 1981; Alt et al., 1986). These diamonds and their
mineral inclusions originated from carbon and oxygen derived
from the sedimentary organic matter or altered oceanic crust
(Li et al., 2019) subducted into the mantle, as evidenced by a cor-
relation of heavy 18O in silicate DIs and light, low 13C/12C carbon
(Ickert et al., 2015; Li et al., 2019). The extent of this “diamond
shielding” effect can be evaluated by comparing δ18O histograms
for garnet in DIs and diamondiferous eclogites. The δ18Omode for
the DI garnet is between þ7 and þ8 ‰, 1 ‰ higher than the
mode for the exposed garnet in diamondiferous eclogites (Fig. 1b).

One cannot defer to the “diamond shielding” effect to
explain the contrast between garnet compositions of diamond-
iferous and barren xenoliths. The latter show a mode at þ5 to
þ6 ‰, at a lower δ18O than diamondiferous xenoliths, and an
extended “tail” of the distribution towards 0‰ (Fig. 1a). A clear
difference in δ18O was shown for both Cpx and Grt for barren
and diamondiferous eclogites worldwide (Fig. 2). Traditionally,

Figure 1 δ18O histograms for eclogitic garnet in xenoliths and DIs.
(a) Comparison of our data with Kaapvaal non-diamondiferous
eclogites. (b) Comparison of global data for garnet/majorite DIs
with garnets from diamondiferous eclogites worldwide (referen-
ces are listed in the Supplementary Information). Lines are
kernel-smoothed distribution curves.

Geochemical Perspectives Letters Letter

Geochem. Persp. Let. (2023) 27, 15–19 | https://doi.org/10.7185/geochemlet.2328 16

https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://www.geochemicalperspectivesletters.org/article2328/#Supplementary-Information
https://doi.org/10.7185/geochemlet.2328


this difference would be explained as the contrast in δ18O of the
eclogite protoliths is related to their depth position within the
slab and the gradual decrease of δ18O with depth in the oceanic
crust (McCulloch et al., 1981; Alt et al., 1986). In this model, gar-
net in barren eclogites might have inherited the δ18O from deep
gabbro layers of oceanic crust (δ18O= 0 toþ5‰; Alt et al., 1986).
Diamondiferous eclogites with higher δ18O, by contrast, may
have recorded a higher input from altered oceanic basalts
(δ18O=þ7 to þ15 ‰; McCulloch et al., 1981; Alt et al., 1986;
Eiler, 2001; Korolev et al., 2018b).

The second model can explain light C and heavy O isotope
compositions of many diamonds and their inclusions, where car-
bonate in altered mafic-ultramafic oceanic crust with δ18O=þ11
to þ33 ‰, δ13C=−30 to −5 ‰ (Li et al., 2019) and organic C
(Fig. 3) contributed to eclogite protoliths. Yet the Cullinan dia-
monds with eclogitic and sublithospheric majoritic inclusions
have the characteristic mantle δ13C of −2.4 to −4.8 ‰ (Fig. 3)
indistinguishable from Cullinan peridotitic diamonds (Korolev
et al., 2018a). Thus, the model implying contribution of carbonate
in altered mafic-ultramafic oceanic crust cannot be universally
applied to all diamonds with inclusions enriched in heavy O,
although the model adequately explains compositional patterns
in many diamond occurrences.

Another factor that may contribute to contrasting δ18O in
barren and diamondiferous eclogites are diamond-forming
metasomatic reactions.Metasomatism plays a central role in dia-
mond formation (Stachel and Harris, 2008), and its effect on sta-
ble isotopes of diamondiferous parageneses ought to be
quantitatively assessed. It was proposed that the metasomatism
may have modified the eclogitic protolith by diffusional equili-
bration with a carbonatitic fluid (Lowry et al., 1999) or with
the mantle carbonatitic fluids containing heavy oxygen (δ18O
of þ5 to þ10.5 ‰) (Gréau et al., 2011; Huang et al., 2016).
However, any fluid deviating from the mantle O isotopic com-
position is expected to be short lived, as it would be buffered back
to the mantle δ18O values by re-equilibration with ambient peri-
dotite oxygen isotope reservoirs (Riches et al., 2016).

We tested viable diamond-forming reactions that do not
involve heavy oxygen-rich fluids for 18O enrichment effects.
Diamond can form by oxidation of methane-rich fluids, by

reduction of carbonatitic fluids or by isochemical precipitation
from cooling or ascending C-H-O fluids (Stachel and Luth,
2015). The isochemical precipitation would not shift δ18O,
while oxidation of methane or other reduced fluids equilibrated
with H2O would lead to metasomatic silicates with lighter oxy-
gen compositions (Ickert et al., 2013). An origin of diamond
from an oxidised medium was suggested on the basis of the
core-to-rim increases in δ13C composition of individual dia-
monds (Smart et al., 2011) and daughter minerals in fluid inclu-
sions in diamonds (Kopylova et al., 2010). We modelled δ18O
effects for metasomatism by oxidising fluids in multiple feasible
reactions with the realistic eclogitic mineralogy. The reactions
start with the carbonatitic fluid equilibrated with the initial
eclogitic garnet (δ18O =þ6.0 ‰) and leads to a δ18O value of
resulting garnet elevated by as much as 1.5 ‰ (Fig. 4;
Supplementary Information). Diamond-forming metasomatis-
ing reactions with the strongest δ18O shift upward involve 1)
production of O2 or CO2, 2) heavy oxygen supplied by the
metasomatic fluid, 3) a sufficiently high fluid/rock ratio (1–3
moles of fluid to 1 mole of garnet), and 4) oxides (rutile or
ilmenite) as products rather than reactants. In Reactions 1
and 2 (Table S-4), diamond forms by disproportionation also
creating free O2, which is immediately used up to make
Fe3þ-bearing Grt and Cpx (Reaction 8; Table S-4). Reactions
3–7 (Table S-4) facilitate diamond production indirectly, by
adding carbon dioxide to C-O-H mantle fluids that may be
parental to diamonds (Stachel et al., 2022). The CO2 concentra-
tions in the mantle, however, are expected to be low, buffered
by silicate carbonation (Kopylova et al., 2021). In CO2 produc-
ing reactions the δ18O of product garnet is elevated by 0.5 to
0.6 ‰ (Table S-4), and the strongest δ18O upward shift of
1.5 ‰ is observed as a net effect of Reaction 1:

Almandineþ 3 · Magnesite = PyropeþMagnetite

þ 3 · Cþ 2.5 · O2

Figure 2 Comparison of δ18O in eclogitic minerals for barren
(n= 183) and diamondiferous (n= 52) parageneses worldwide
(references are given in the Supplementary Information) with a
superimposed histogram for δ18O in the Cullinan DIs (this study).

Figure 3 Comparison of δ18O of eclogitic garnets/majorites and
δ13C of the host diamond worldwide (ESM1) with δ18O of
Cullinan diamond inclusions. Inclusions with δ13C for studied
Cullinan diamonds (Korolev et al., 2018a) are plotted as symbols,
δ18O of eclogitic garnets with no information on the host diamond
δ13C are shown as the green histogram. The blue hexagon marks
the initial magnesite reactant. A blue arrow connects δ18O of
the magnesite reactant with the Grt product for modelled com-
bined metasomatic reactions (Reactions 1 and 8 in Table S-4); it
is placed at an average mantle value of −6 ‰ for δ13C. The blue
field corresponds to δ13C in sedimentary carbonates, the yellow
field represents mantle carbon, and the pink field is for organic
carbon.
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followed by Reaction 8:

2 · Grtþ 13.5 · Cpxþ 0.5 · O2 = 3 · Fe3þ-bearing Grt

þ 11 · Fe3þ-bearing Cpxþ 2 · QuartzðCoesiteÞ:
All phases in the proposed reactions are found in cratonic

eclogites (e.g., Jacob, 2004), and the latter reaction is based on the
observed concentrations of Fe3þ in eclogitic minerals (Aulbach
et al., 2022). A replacement of eclogitic garnet with a more mag-
nesian garnet has been described in multiple occurrences as part
of diamond-friendly metasomatism (e.g., De Stefano et al., 2009;
Korolev et al., 2021). An increase of MgO was found to be the
most significant chemical change accompanying δ18O enrich-
ment in garnet from Orapa eclogite xenoliths (Deines et al.,
1991). It is well known that metasomatism oxidises the adjacent
metasomatised mantle (Creighton et al., 2009). The reactions are
equally applicable to majorites in the sublithospheric mantle
(Supplementary Information).

We conclude that some metasomatic reactions of dia-
mond formation in eclogites may contribute to the observed
δ18O contrast between barren and diamondiferous eclogitic
assemblages worldwide, yet the strongest upward δ18O shift
of all feasible metasomatic reactions (up to 1.5 ‰) achieved
in decarbonation followed by metasomatic oxidation is not
sufficient to explain the 2.5 ‰ difference in δ18O (Fig. 4).
Inheritance of the O isotopic composition from the crustal
eclogitic protoliths is the only model that currently offers a
satisfactory explanation for the contrast. This implies preferen-
tial diamond formation in eclogites with shallow basaltic
protoliths with or without contribution of carbonate in altered
mafic-ultramafic oceanic crust that experienced stronger low
temperature alteration on the seafloor.
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Analytical Methods 
 
Diamond Polishing 
 
Diamond inclusions (DIs) were analysed on polished diamond surfaces in situ. Host diamonds have been polished at 
the Department of Earth, Ocean and Atmospheric Sciences (EOAS) of the University of British Columbia (Vancouver, 
Canada) using a steel scaif impregnated with diamond powder. No natural or synthetic abrasive material was used for 
polishing. 
 
Major-element Compositions of the Cullinan DIs: Microprobe Analysis 
 
Major element composition of the exposed inclusions was analysed on a CAMECA SX-50 electron microprobe at EOAS, 
UBC. The studied samples were coated with carbon, analysed with a beam current of 20 nA, an acceleration voltage of 
15 kV, and a peak count time of 20 s (except for K in pyroxene [40 s] and Na in garnet [60 s]); two backgrounds on 
either side of the peak were counted for 10 s (except for K in pyroxene [20 s] and Na in garnet [30 s]). The diameter of 
the electron beam was ⁓5 μm. The following standards, X-ray lines and crystals were used for garnet: albite, Na Ka, 
TAP; pyrope, Mg Ka, TAP; pyrope, Al Ka, TAP; pyrope, Si Ka, TAP; pyrope, Ca Ka, PET. For the elements 
considered in pyroxene analyses, the following standards, X-ray lines and crystals were used: albite, Na Ka, TAP; 
kyanite, Al Ka, TAP; diopside, Mg Ka, TAP; diopside, Si Ka, TAP; orthoclase, K Ka, PET; diopside, Ca Ka, PET; 
rutile, Ti Ka, PET; synthetic magnesiochromite, Cr Ka, LIF; synthetic rhodonite, Mn Ka, LIF; synthetic fayalite, Fe 
Ka, LIF. The 'PAP' f(rZ) method (Pouchou and Pichoir, 1991) has been applied for the data reduction. Detection limits 
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are given in Table S-1. Fe3+ content was calculated stoichiometrically on the basis of the ideal oxygen unit total for each 
respective mineral. Chemical compositions of the studied inclusions and related information are given in Table S-5. 
	
	
Table S-1 Calculated minimum detection limits in wt. % (MDL) for the Cullinan diamond inclusions. 
 

Elements Grt Cpx 
SiO2 0.06 0.06 
TiO2 0.05 0.05 
Al2O3 0.04 0.04 
Cr2O3 0.07 0.07 
FeO 0.08 0.07 
MnO 0.07 0.07 
MgO 0.03 0.03 
CaO 0.04 0.04 
Na2O 0.02 0.02 
K2O - 0.02 

 
 
Raman Spectroscopy of the Cullinan DIs 
 
Raman spectra of the mineral inclusions from diamonds were obtained with a Horiba XploRA PLUS confocal Raman 
spectrometer equipped with a CCD-detector at EOAS, UBC (Vancouver, Canada). Spectra have been collected at room 
temperature with the 532.18 nm line of a 14 mW Nd-YAG laser through an OLYMPUSTM 100X objective in the range 
between 100 and 1500–1800 cm−1 at 1.3 cm−1 spectral resolution, and ~1 μm spatial resolution. The aperture of the 
confocal hole was set to 200 μm, the spectra slit width was 300 μm. 
 
Oxygen Isotope Compositions of the Cullinan DIs: Secondary Ion Mass Spectrometry (SIMS) 
 
Oxygen isotope composition was measured in 50 eclogitic garnet and majorite inclusions (Table S-5). 

Preparation of mounts and SIMS study of the samples were conducted at the Canadian Centre for Isotopic 
Microanalysis (CCIM), University of Alberta. Polished diamonds with the exposed majorite and garnet inclusions were 
arrayed on a tape and cast in 25 mm diameter epoxy mounts (M1612, M1613) along with CCIM garnet reference 
materials (RMs) S0068 (Gore Mountain Ca-Mg-Fe garnet), and S0088B (grossularite). The prepared mounts were 
cleaned with a lab soap solution and de-ionised H2O. The studied samples were coated with 25 nm of high-purity Au 
prior to scanning electron microscopy (SEM). The SEM observations were made with a Zeiss EVO MA15 electron 
microscope using beam conditions of 20 kV and 3–4 nA. Coating of 100 nm of Au was subsequently deposited on the 
mount before SIMS analysis. 

The oxygen isotope analysis (18O, 16O) of garnets was conducted using a Cameca IMS 1280 multicollector ion 
microprobe. Garnet analytical methods and RMs are reported in detail by Ickert and Stern (2013). A 133Cs+ primary 
beam was operated with impact energy of 20 keV, and beam current of ~2.0 nA. The probe with the diameter of ~8 µm 
was rastered (20 × 20 µm) for 30 s prior to acquisition, and then 3 × 3 µm during acquisition, forming elliptical analysed 
areas ~12 µm across and ~1 µm deep. The normal incidence electron gun was utilised for charge compensation. Negative 
secondary ions were extracted through 10 kV potential into the secondary (Transfer) column. Transfer conditions 
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included a 122 µm entrance slit, a 5 × 5 mm pre-ESA (field) aperture, and 133× sample magnification at the field 
aperture, transmitting all regions of the sputtered area. The mass/charge separated oxygen ions were detected 
simultaneously in Faraday cups L’2 (16O−) and H’2 (18O−) at mass resolutions (m/Dm at 10 %) of 1950 and 2250, 
respectively. Secondary ion count rates for 16O− and 18O− were typically 2 × 109 and 4 × 106 counts/s utilising 1010 W 
and 1011 W amplifier circuits, respectively. Faraday cup baselines were measured at the start of the analytical session. A 
single analysis took 240 s, including pre-analysis primary beam implantation, automated secondary ion tuning, and 75 
s of continuous peak counting. 

Instrumental mass fractionation (IMF) was monitored by repeated analysis of S0068 (UAG) and S0088B with 
d18OVSMOW = +5.72 ‰ and +4.13 ‰, respectively. One analysis of S0068 was taken after every four measurements, and 
one analysis of S0088B was taken after every eight unknowns. The data set of 18O−/16O− for S0068 garnet was processed 
collectively for two analytical sessions, yielding standard deviations of 0.10–0.13 ‰ after correction for systematic 
within-session drift. Data for S0088B and unknowns were first IMF corrected to S0068 garnet, and then further corrected 
according to their measured Ca#’s (Ca / [Ca + Mg + Fe]) using the methods suggested by Ickert and Stern (2013). The 
quadratic matrix calibration curve parameters (Ickert and Stern, 2013) were scaled to fit S0088B to its reference value. 
The 95 % confidence uncertainty estimates for d18OVSMOW for garnet unknowns average ±0.30 ‰, and include errors 
relating to within-spot counting statistics, between-spot (geometric) effects, correction for instrumental mass 
fractionation, and matrix effects relating to Ca#s determined by electron microprobe wavelength dispersive spectrometry. 

All 18O/16O ratios are reported in per mil (‰) and expressed in delta notation (d18O) relative to Vienna Standard 
Mean Ocean Water (VSMOW) (Baertschi, 1976) in Equation S-1: 
 

d18O (‰) = [(18O/16O)sample / (18O/16O)VSMOW] − 1 (Eq. S-1) 
 
Because the study jointly uses d18O values from SIMS and older laser fluorination analyses, it is important to establish 
their consistency. New data for Roberts Victor eclogitic garnet (Hardman et al., 2021) (Fig. S-1) demonstrate that O 
isotope measurements by SIMS at the Canadian Centre for Isotopic Microanalysis (CCIM) and laser fluorination (LF) 
techniques are reproducible with the maximal discrepancy of ±0.35 ‰. 
 
 

 
Figure S-1 Reproducibility test for O isotope measurements by SIMS at the Canadian Centre for Isotopic 
Microanalysis (CCIM), University of Alberta and laser fluorination (LF) techniques for garnet in Roberts Victor 
eclogites (Hardman et al., 2021). 
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Samples and Results 
 
Mineral Inclusions from the Cullinan Diamonds 
 
We studied DI in mafic mineral parageneses (eclogitic and majorite-bearing parageneses of the transition zone) from 
diamonds of the Cullinan mine (Premier kimberlite), South Africa. This location was chosen because its slab-related 
diamonds formed from the single carbon source with narrow C isotope composition (d13C of 45 samples = −1.3 to 
−7.8 ‰), but derive from a wide interval of pressures (P) and temperatures (T) (Korolev et al., 2018a, 2018b). Mineral 
inclusions come from depths of ~170–220 km (Grt and Cpx), 280–420 km (majorites) (Korolev et al., 2018a, 2018b) 
and >550 km (CaSi-perovskite) (Nestola et al., 2018), covering the broad T range in the lithospheric mantle from 
1280 °C up to super-adiabatic 1570 °C (5.6–7.2 GPa) (Korolev et al., 2018a, 2018b). To extend these intervals, we 
screened the Cullinan diamonds for more coexisting Grt-Cpx pairs and majorites that make the diamonds amenable to 
thermobarometry. As a result, we analysed 42 Grt-Cpx pairs and 8 majorites and calculated their P-Ts of formation. 
This number of analyses and their respective P-Ts are the highest reported for eclogitic diamonds from a single 
kimberlite. The inclusions were analysed for major elements; 50 garnets and majorites were further analysed for oxygen 
isotopes. 

Analysed d18O compositions of garnet cover a range of +5.4 to +10.2 ‰ that includes the oxygen isotope 
composition of majorites (+6.0 to +9.4 ‰, Table S-5), indicating that the oxygen isotope composition does not change 
during slab transfer from the lithospheric to the sublithospheric mantle. Garnets and majorites show no correlation of 
the O isotopes with T or P, except a small subset of Mg-rich garnets coexisting with Cpx low in jadeitic component 
(Figs. S-2a and S-3). 
 
Covariations of d18O with Thermodynamic Parameters of DIs 
 
d18O shows a bimodal distribution with the first peak of around +6.0 ‰ and the other at +8.4 ‰ (green line on Fig. S-
2). Garnets with d18O > 7.0 ‰ show no correlation of the O isotopes with T. Garnets with the lighter O (d18O < 7.0 ‰) 
can be divided into two groups, associated with the highly jadeitic (Jd) cpx (Jd > 40 %) or not (Fig. S-2b). MgO content 
of garnets in association with the high-Jd cpx is lower (7.2–12 wt. %, the median is 10.8 wt. %) than MgO content of 
the other garnets (9.2–17.4 wt. %, the median is 14.1 wt. %; Table S-5). The Mg-poor garnets associated with high-Jd 
cpx do not demonstrate a d18O–T correlation, while Mg-rich garnets coexisting with low-Jd Cpx show a pronounced 
d18O–T correlation (PCC = 0.72) (Fig. S-2a). The Mg-poor garnets associated with high-jadeitic Cpx are sourced from 
a variety of temperatures (Fig. S-2a) and pressures. There is no correlation between P and the oxygen isotope 
composition of garnets and majorites. Although we did not find any global correlation between T or P and d18O in garnet, 
the d18O–T correlation is observed for Mg-rich garnets coexisting with low-Jd Cpx (Fig. S-2a). This correlation, along 
with analogous data on the Orapa and Lace mantle eclogite xenoliths (Deines et al., 1991; Aulbach et al., 2017) point 
to occasional presence of correlations restricted to a subset of samples (14 Cullinan inclusions (Fig. S-2a), 13 Lace 
eclogites (Aulbach et al., 2017), and 12 Orapa eclogites (Deines et al., 1991)). Notably, the d18O–T correlation relates 
to the chemical composition of the Cullinan DIs, but also occurs in samples with d18O < 7 ‰ (Fig. S-2a). 
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Figure S-2 Covariations of the oxygen isotope compositions for garnets in studied Cullinan diamonds with (a) 
calculated Cpx-Grt DI temperatures (Nakamura, 2009; adiabat after Katsura et al., 2010) and (b) jadeitic content of the 
coexisting DI Cpx. Here and on figures below the beige colour strip is the d18O mantle value canonical mantle range 
(5.5 ± 0.4 ‰) (Mattey et al., 1994). PCC stands for the Pearson Correlation Coefficient. 
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Figure S-3 Covariations of the oxygen isotope compositions with temperature and pressure for eclogitic Kaapvaal 
garnets in comparison with the studied Cullinan diamonds. (a) The garnet d18O vs. calculated Cpx-Grt temperatures 
(Nakamura, 2009). The temperatures for Kaapvaal eclogite xenoliths (see the database in Table S-5) were recalculated 
(Nakamura, 2009) for consistency; adiabat is after Katsura et al. (2010). (b) The d18O vs. estimated P. The pressure for 
Kaapvaal eclogites and Cullinan DIs is calculated by projection of the Cpx-Grt temperatures (Nakamura, 2009) onto the 
peridotitic geotherm as detailed in Korolev et al. (2018b). Full list of references on major element analyses of Cpx and 
Grt, and d18O in garnet is given below. The graphite-diamond phase boundary (Day, 2012) is shown by the blue line. It 
is positioned for the Kaapvaal craton at the intersection with the 40 mW/m2 model conductive geotherm (Hasterok and 
Chapman, 2011). 
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Figure S-4 Covariation between temperature and d18O composition for garnet and clinopyroxene from eclogite 
xenoliths worldwide. (a) The difference in oxygen isotope composition between garnet and clinopyroxene vs. 
temperature for 181 pairs; the difference between d18Ogrt and d18Ocpx is ±0.87 ‰ (2σ; green area). (b) A plot of d18Ogrt 
vs. T. (c) A plot of d18Ogrt vs. pressure. The full list of references is given below. 
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Oxygen isotope composition of Cullinan majorites vs. DI majorites worldwide 
 
All majorites that occur as diamond inclusions show relatively high d18O values well above the conventional mantle 
range (Fig. 3). The analysed majorites from Figure 3 include the Cullinan samples presented in this study (7 samples), 
DI from Jagersfontein (11 samples, Ickert et al., 2015), Juina-5 (3 samples, Burnham et al., 2015), and Collier-4 (3 
samples, Burnham et al., 2015) diamonds. Majorites from Cullinan diamonds are notable because of their contrasting 
O isotope signatures. Majorites with heavy oxygen (d18O > 8.7 ‰) comprise 78 % of samples from Jagersfontein, Juina, 
and Collier, but never found among Cullinan majorites (Fig. 3). Moreover, three Cullinan samples with the lowest d18O 
of 6.0, 6.6, and 7.0 ‰ are not matched by majorites from other locations (Fig. 3 and Table S-5). Majorite DIs from 
elsewhere may have formed from heavier, hydrothermally altered O source and were found in diamonds with the lighter 
d13C signatures sourced from organic matter or altered oceanic crust (−26 to −9 ‰, Fig. 3). In contrast, Cullinan majorite 
inclusions have been captured by diamonds with the mantle d13C signatures (−4.7 to −2.1 ‰, Fig. 3 and Table S-5). 
This pattern suggests an exclusively shallow crustal source of C and O for majorite-bearing diamonds from Jagersfontein, 
Juina, and Collier, while the oxygen isotope composition of Cullinan majorites possesses crustal signatures, and host 
diamonds show prominent affinity with mantle source of carbon. Diamond formation processes in the majorite-hosting 
diamonds locations were clearly different even though all the majorites formed in the deeply subducted mafic slab and 
had low-Cr eclogitic major element compositions. 
 
Statistical t-test for d18O in Garnets from Diamondiferous and Barren Eclogites from the Kaapvaal Craton 
 
We carried out the independent two-sample unequal t-test for the diamondiferous and barren eclogites from the Kaapvaal 
craton (Table S-2). The t-test determines that the average d18O and its distribution in garnet from the diamondiferous 
eclogites are distinct from the barren eclogites from the Kaapvaal craton with a probability >99.99 % (Table S-2). 
 
 
Table S-2 Comparison of the garnet oxygen isotope composition (d18O in ‰) in the statistical samples of 
diamondiferous and barren eclogites from the Kaapvaal craton (data set: full list of references is given below). 
 

Number of samples d18O in garnet 
Diamondiferous eclogites 42 

d18O in garnet 
Barren eclogites 187 

Average d18O (in ‰)	 7.28 5.04 
1s	 1.31 1.49 
t-test (calc.)  9.77 
Significance level:   
     0.01 %  4.13 
     0.1 %  3.44 
     1 %  2.65 
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Geochemical Modelling of d18O and d13C Effects of Decarbonation Reactions 
 
Numerical modelling of decarbonation at temperatures 1000 and 1200 °C was carried out for the following reactions 
also listed in Table S-4: 
 
1.  Alm + 3⸱Mgs = Prp + Mag + 3⸱C + 2.5⸱O2 
2.  2⸱Grt + 2⸱Ttn + 2⸱Mgs = 2⸱Grt + Cpx + 2⸱Ilm + 2⸱C + 2⸱O2 
3.  2⸱Grt + 2⸱Ttn + 2⸱Mgs = 2⸱Grt + Cpx + 2⸱Ilm + 2⸱CO2 

4.  Prp + Rt + Mgs = Mg-Prp + Gk + CO2 
5.  Prp + 2⸱Qz + Dol = Prp + Di + 2⸱CO2 
6.  3⸱Prp + 4⸱Qz + 2⸱Mgs = 2⸱Prp + 4⸱En + 2⸱Ky + 2⸱CO2 
7.  Grs + Di + 2⸱Qz + Dol = Grs + 2⸱Di + 2⸱CO2 
 
All phases except O2 in the proposed reactions are found in cratonic eclogites (e.g., Jacob, 2004; Smith et al., 2015; 
Mikhailenko et al., 2022), and some of them are one of several end members of more complex mineral composition (Di 
and En as a component of omphacite eclogitic Cpx; Alm, Grs, and Prp are components of a more complex Grt 
composition). Quartz substitutes for coesite for the purpose of d18O modelling. As can be seen from reactions 1 and 2 
above, they produce O2, which we treat as a virtual component, not as a free gas phase in the deep mantle. The oxygen 
oxidises garnet and clinopyroxene, for example in reaction (8a): 
 
8a. 2⸱(Fe2+

2.13Mg0.62Ca0.25)3.00 Al2.00 [SiO4]3 + 8⸱(Ca0.20Na0.80)1.00(Mg0.20Al0.80)1.00 (Si2O6) + 
5.5⸱(Ca0.90Na0.10)1.00 (Mg0.82Fe2+

0.08Al0.10)1.00 (Si2O6) + 0.5⸱O2 
 
= 
 
3⸱(Mg1.10Ca1.00Fe2+

0.90)3.00 (Al1.98Fe3+
0.02)2.00 [SiO4]3 + 10⸱(Ca0.35 Na0.65)1.00 (Mg0.35 Al0.46 Fe3+

0.19)1.00 (Si2O6) + 
(Ca0.55 Na0.45)1.00 (Mg0.55 Al0.41 Fe3+

0.04)1.00 (Si2O6) + 2⸱SiO2.	
 
Compositions of garnet and clinopyroxene in the reaction are taken from natural eclogite samples where mineral Fe3+ 
are analysed (Kopylova et al., 2016; Aulbach et al., 2022). For the purposes of oxygen isotope modelling, the reaction 
is simplified as: 
 
8b. 2⸱Grt + 13.5⸱Cpx + 0.5⸱O2 = 3⸱Grt + 11⸱Cpx + 2⸱Qz(Coe). 
 
Reactions (1–8) are fully balanced. We assumed the initial equilibrium of all reactants with garnet with d18О = +6 ‰. 
The modelling used oxygen and carbon fractionation factors derived from isotope equilibration of silicate minerals 
with carbonate, of CO2 and O2 and applicable to high temperatures of the lithospheric mantle (Table S-3). We also 
calculated relevant oxygen isotope fractionation factors (Table S-3) from the internally consistent database of Vho et 
al. (2019) at 1000 and 1200 °C. For reaction 8 that involves oxidation, we used O2 with a range of δ18O values 
calculated from reactions (1) and (2); net effects for combined reactions (1) + (8) and (2) + (8) are also listed (Table S-
4). 
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Table S-3 Fractionation of oxygen isotopes in the modelled decarbonation reactions at 1000 and 1200 °C 
 

Reaction 103lna 
at 1000 °C 

103lna 
at 1200 °C 

References 

Alm–Mag 2.23 1.85 Calculated from database of Vho et al. (2019) 
Alm–Mgs −2.28 −1.91 Calculated from database of Vho et al. (2019) 
Grs–Di −0.34 −0.27 Calculated from database of Vho et al. (2019) 
Grs–Dol −2.36 −1.96 Calculated from database of Vho et al. (2019) 
Grs–Qz −2.35 −1.93 Calculated from database of Vho et al. (2019) 
Grt–Cpx 0.02 0.02 Chacko et al. (2001) 
Grt–Mag 2.21 1.65 Chacko et al. (2001) 
Grt–Ttn 0.59 0.44 Chacko et al. (2001) 
Jd–Prp 1.36 1.14 Calculated from database of Vho et al. (2019) 
Jd–Qz(Coe) −1.24 −1.03 Calculated from database of Vho et al. (2019) 
Mgs–CO2 1.86 1.43 Chacko and Deines (2008) 
Prp–Dol −2.62 −2.20 Calculated from database of Vho et al. (2019) 
Prp–En −0.39 −0.31 Calculated from database of Vho et al. (2019) 
Prp–Gk 2.39 1.98 Calculated from database of Vho et al. (2019) 
Prp–Ilm 2.13 1.76 Calculated from database of Vho et al. (2019) 
Prp–Jd −1.36 −1.14 Calculated from database of Vho et al. (2019) 
Prp–Ky 0.89 0.71 Calculated from database of Vho et al. (2019) 
Prp–Mgs −2.54 −2.13 Calculated from database of Vho et al. (2019) 
Prp–Qz −2.61 −2.17 Calculated from database of Vho et al. (2019) 
Prp–Rt 1.21 1.02 Calculated from database of Vho et al. (2019) 
Prp–Ttn −0.06 −0.04 Calculated from database of Vho et al. (2019) 
Qz–Dol −0.02 −0.03 Calculated from database of Vho et al. (2019) 
Qz–Mgs −0.02 −0.03 Calculated from database of Vho et al. (2019) 

Mineral abbreviations (according to Warr, 2021): Alm, Almandine; Coe, coesite; Cpx, clinopyroxene; Di, diopside; Dol, dolomite; 
En, enstatite; Gk, geikielite; Grs, grossular; Grt, garnet; Ilm, ilmenite; Jd, jadeite; Ky, kyanite; Mag, magnetite; Mgs, magnesite; 
Prp, pyrope; Rt, rutile; Qz, quartz; Ttn, titanite. 
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Table S-4 d18O effects for reactions of diamond formation 
 

Reaction 
# 

Reactions d18O effect on  
the resulting Grt (‰) 
as the reaction 
proceeds 

	 	 at 1000 °C at 1200 °C 
	 	 	 	
1 Alm + 3⸱Mgs = Prp + Mag + 3⸱C + 2.5⸱O2 

 
1.3–1.4 1.0–1.1 

2 2⸱Grt + 2⸱Ttn + 2⸱Mgs = 2⸱Grt + Cpx + 2⸱Ilm + 2⸱C + 
2⸱O2 

 

0.6 0.5 

3 2⸱Grt + 2⸱Ttn + 2⸱Mgs = 2⸱Grt + Cpx + 2⸱Ilm + 
2⸱CO2 

 

0.1–0.3 0.1–0.3 

4 Prp + Rt + Mgs = Mg-Prp + Gk + CO2 

 

0.03–0.2 0.1–0.2 

5 Prp + 2⸱Qz +Dol = Prp + Di + 2⸱CO2 

 
0.1–0.5 0.2–0.4 

6 3⸱Prp + 4⸱Qz + 2⸱Mgs = 2⸱Prp + 4⸱En + 2⸱Ky + 
2⸱CO2 

 

0.5–0.6 0.5 

7 Grs + Di + 2⸱Qz + Dol = Grs + 2⸱Di + 2⸱CO2 

 
−1.6 to 
−1.4 

−1.6 to 
−1.4 
 

8 2⸱Grt + 13.5⸱Cpx + 0.5⸱O2 = 3⸱Grt + 11⸱Cpx + 
2⸱Qz(Coe) 
 

0.1 0.1 

(1) + (8) Net effect for (8) taking place after (1) 
 

1.4–1.5 1.1–1.2 

(2) + (8) Net effect for (8) taking place after (2) 
 

0.7 0.6 

Calculations are done for d18O of the Grt/Alm reactant of 6 ‰ and d13C of Mgs reactant of −6 ‰. Abbreviations of minerals 
(according to Warr, 2021): Alm, almandine; Cpx, clinopyroxene; Di, diopside; Dol, dolomite; En, enstatite; Gk, geikielite; Grs, 
grossular; Grt, garnet; Ilm, ilmenite; Jd, jadeite; Ky, kyanite; Mag, magnetite; Mgs, magnesite; Prp, pyrope; Rt, rutile; Qz, quartz; 
Ttn, titanite. 
	
	

The decarbonation was considered as a Rayleigh process in accordance with (Baumgartner and Valley, 2001), 
where the O isotope composition of the metasomatic agent is described as: 
 

δ!"# = 10$[𝑓%&' − 1] (Eq. S-2) 
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where dMgs – oxygen isotope composition of magnesite at any stage of the decarbonation; f – the extent to which the 
decarbonation reaction proceeds, or an abundance of oxygen in the carbonate residue; a – the fractionation coefficient 
of oxygen isotopes in the СО2-Mgs (O2-Mgs) system. 

For any state of the system characterised by value f, the following equation calculates d18О of СО2 or О2: 
 

δ()*+, = (δ!"#- − 𝑓 ∙ δ!"#)/(1 − 𝑓) (Eq. S-3) 

 
The oxygen isotope composition of the reaction products (for example, newly formed garnet and magnetite in Reaction 
1) can be calculated using mass balance: 
 

δ!"# =
$!"!%$#$ ∙'#$(∆(&'!()*+)∙')*+

'&'!(')*+
	 (Eq. S-4)	

where dPrp – oxygen isotope composition of the newly-formed pyrope; dО2 – oxygen isotope composition of the product 
fluid phase; DGrt-Mag – equilibrium oxygen isotope fractionation between garnet and magnetite; ХО2, XGrt, and XMag – molar 
fractions of the reaction products oxygen, garnet, and magnetite, respectively; dtot – oxygen isotope composition of the 
whole (total) system. 

All of the above reactions are applicable to	majorite formation in the sublithospheric mantle. Carbonatitic fluids 
traverse the transition zone and the lower mantle (Collerson et al., 2010; Timmerman et al., 2021) as evidenced by 
micron-sized carbonate inclusions in sublithospheric diamonds (Kaminsky et al., 2016; Zedgenizov et al., 2016). 
Clinopyroxene (diopside) is stable in the transition zone to depths of ~570 km (17–18 GPa; Canil, 1994), while ilmenite 
is stable down to 20–26 GPa, at pressures of the lower mantle (Yu et al., 2011). Ilmenite and magnetite are described 
as inclusions in sublithospheric diamonds (e.g., Kaminsky et al., 2001, 2009; Kaminsky, 2012). Titanite’s P-T stability 
field as an independent phase and as a solid solution end member extends to the sublithospheric mantle as shown by 
experiments in the bulk mafic composition (Kanzaki et al., 1991; Gasparik et al., 1994; Knoche et al., 1998). Coesite 
(quartz in the reactions from Table S-4) can be in equilibrium with majorite in the sublithospheric mantle down to about 
10.5 GPa, subsequently in the transition zone it transforms into stishovite (Zhang et al., 1996 and references therein). 
In the absence of fractionation coefficients for isotopes in majorite, we employed respective coefficients DGrt	for garnet. 
 
 
 
 
Supplementary Table 
 
Table S-5 (Sheet 1) Point-by-point data on oxygen isotope analyses of majorite and garnet inclusions from the 
Cullinan diamonds measured by SIMS. (Sheet 2) Averaged oxygen isotope and major-element composition (for 
samples) of majorite and garnet inclusions from the Cullinan diamonds measured by SIMS. (Sheet 3) Averaged major-
element composition of the clinopyroxene inclusions from the studied Cullinan diamonds (in wt. %) 
 
Table S-5 (.xlsx) is available for download from the online version of this article at 
https://doi.org/10.7185/geochemlet.2328. 
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