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High-density fluid (HDF) microinclusions in diamonds allow direct investigation of
deep carbon- and water-rich fluids that influence the properties of Earth’s mantle.
Identifying the sources and evolution of such fluids in the context of different poten-
tial mantle reservoirs is difficult due to the limited radiogenic isotope data. Here, we
report Sr-Nd-Pb isotope compositions of silicic to low-Mg carbonatitic HDFs in a
suite of diamonds from a single source in Canada. Relationships between isotopes
and trace element compositions indicate the contribution of two distinct sources
within the continental lithosphere: one with relatively primitive isotopic composi-
tions characterised by εNd of −0.2, 87Sr/86Sr of 0.7044 and 206Pb/204Pb of 17.52,
and another with more unradiogenic εNd<−16 and radiogenic 87Sr/86Sr and
206Pb/204Pb> 0.713 and 18.3, respectively. We suggest that the latter reflects an

old metasomatic event in the continental lithosphere involving fluid addition from a subducting slab, most probably in the
Paleoproterozoic. HDFs formed and their host diamonds crystallised in amore recent metasomatic event, indicated by the unag-
gregated nitrogen of the diamonds, where fluids from both sources mixed. HDFs from Canada, Botswana, and Congo have
comparable isotope-trace element relationships, suggesting contributions of similar sources in distinct lithospheric provinces
worldwide.
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Introduction

Carbon- and water-rich fluids involved in large-scale tectonic
processes carry incompatible element-enriched chemical finger-
prints, which are common in metasomatised mantle-derived
samples (e.g., Dawson, 1984; Turner et al., 2021). Diamonds
are a primary target for studying mantle metasomatic processes,
as they form during fluid-rock interaction and often encapsulate
ambient minerals and high-density fluids (HDFs; either melt or
supercritical fluid). The most commonHDFs are found as micro-
inclusions in ‘fibrous diamonds’ (a fast-growing form of dia-
mond that is usually translucent or opaque with cuboid faces;
seeGraphical Abstract), which vary in composition between four
major types: hydrous-silicic, rich in Si, Al, K and H2O; low-Mg
carbonatitic and high-Mg carbonatitic, both rich in Ca,Mg, Fe, K
and CO2; and hydrous-saline, rich in Cl, K, Na and H2O (Weiss
et al., 2022a). These HDFs provide the opportunity to directly
examine the nature of carbon- and water-rich media in the deep
Earth and constrain their varying origins (e.g., Smith et al., 2012;
Klein-BenDavid et al., 2014; Kempe et al., 2021).

Radiogenic isotopes preserve their signature during mantle
processes such as melting and immiscible separation, and are
therefore an important tool in tracing mantle sources. Available
HDFs Sr isotope data range between 0.703 to 0.723, indicating
sources ranging from ‘depleted’ oceanic mantle to old continental
lithosphere (Akagi andMasuda, 1988; Klein-BenDavid et al., 2010,

2014; Smith et al., 2012; Weiss et al., 2015). To date, only a handful
of diamond HDFs have been analysed for their Nd and Pb isotope
compositions (n= 5 and 3, respectively; Klein-BenDavid et al.,
2010, 2014), which hinders unambiguous evaluation of possible
mantle sources or recycled surface materials in metasomatic
events.

Here, we combine major, trace element and Sr-Nd-Pb
isotope compositions of a suite of 7 HDF-bearing fibrous dia-
monds from Canada to constrain their petrogenesis. Together
with the available isotopic data of similar HDF types in diamonds
from different lithospheric provinces, we investigate possible
HDF origin in the context of large-scale mantle reservoirs and
processes, which control the spectrum of HDF compositions
and the long-term evolution of the deep carbon cycle.

Samples and Methods

Seven fibrous diamonds from a single source in Canada (exact
origin is unknown; see Supplementary Information, Sample
Description) were cut by laser to create ∼500 μm slabs, polished
on both sides, and analysed for their nitrogen characteristics
and microinclusion compositions. FTIR (Fourier-transform infra-
red) spectroscopy establishes they carry 850 to 1250 ppm nitrogen
and all exclusively exhibit absorption due to nitrogen in A-centers
(a neighbouring pair of substitutional N atoms; pure Type IaA
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spectrum). Major element compositions were determined by
EPMA (Electron probe micro-analysis, Kempe et al., 2021;
Weiss et al., 2022a). We used the ‘diamond-in-water’ ablation
approach to prepare the samples for solution trace element analy-
ses by ICP-MS (Inductively coupled plasma mass spectrometry)
and isotope analyses by TIMS (Thermal ionisation mass spec-
trometry, Weiss et al., 2022b). As total procedural blanks (TPBs)
were too small for the determination of isotope compositions,
all isotopic data are presented as measured values. Additional
details are given in the Supplementary Information.

High-Density Fluid (HDF) Compositions

Major element compositions of microinclusions in the studied
diamonds vary from silicic to low-Mg carbonatitic HDFs and fall
within the range of HDF types in fibrous diamonds globally
(Fig. 1a). They display a characteristic negative correlation
between SiO2 and CaO, as well as negative covariance between
SiO2 and FeO. There are positive relationships between SiO2

and Al2O3 as well as CaO and P2O5. K2O is relatively uniform
(Table S-1), but correlates positively with Cl and negatively
with MgO. No systematic spatial (core to rim) compositional
change is observed and in most cases microinclusions within
a single diamond show variation ≤15 % (1σ) for SiO2 and
K2O, and ≤20 % for CaO (Table S-1).

The trace element compositions of the HDFs (Table S-2)
were published previously byWeiss et al. (2022b). Their primitive
mantle (PM) normalised patterns are mostly similar and compa-
rable to previously analysed HDFs (Fig. 1b). They exhibit overall
decreasing levels from the most incompatible to compatible ele-
ments with characteristic anomalies (negative in most cases) of
Rb, Nb, Sr, Zr, Hf and Ti, and trace element ratios indicating the
involvement of accessory mantle phases in their formations
(Weiss et al., 2013). There are no distinctive differences in trace
element compositions between the silicic to low-Mg carbonatitic
compositions; some trace element ratios show continuous varia-
tions irrespective of the major element compositional change
(e.g., La/Nb, Zr/Eu; Fig. 1, 2c; Table S-2).

The HDF’s Sr and Nd isotope compositions vary between
87Sr/86Sr= 0.70438 ± 1 (2SE) to 0.71340 ± 3 and 143Nd/144Nd=
0.5126 ± 1 to 0.51177 ± 3 (εNd=−0.2 to −16.9; Fig. 2a;

Table S-3). They show a general inverse Sr-Nd isotope corre-
lation from bulk silicate Earth (BSE; Zindler andHart, 1986) and
South African kimberlite (Becker and Le Roex, 2006) values to
more radiogenic 87Sr/86Sr and unradiogenic 143Nd/144Nd ratios,
which trend through South African olivine lamproites (formerly
Group II kimberlites or orangeite; Becker and Le Roex, 2006)
towards the range of continental crust compositions (Rudnick,
1990; Thompson et al., 2007). 147Sm/144Nd ratios vary between
0.0669 ± 2 to 0.0970 ± 1 and show a general negative relation-
ship with 143Nd/144Nd (Fig. 2b; Table S-3). The analysed
diamond samples with a TPB contribution of <10 % for Pb (4 of
7; Table S-3), vary between 17.516 ± 2 and 18.149 ± 3 for
206Pb/204Pb, 15.53 ± 3 and 15.680 ± 3 for 207Pb/204Pb and
37.424 ± 6 and 38.412 ± 8 for 208Pb/204Pb. These Pb isotope var-
iations are between depleted to enriched mantle components
for 208Pb/204Pb vs. 206Pb/204Pb, but extend to more radiogenic
207Pb/204Pb values above the Pb mantle array (Fig. S-1;
Hart et al., 1992; Stracke, 2012). They exhibit a strong positive
correlation with Sr isotope compositions (Fig. 3).

The samples define a broad linear negative correlation
between 143Nd/144Nd and La/Nb (Fig. 2c). Similar inverse
relationships are observed between 143Nd/144Nd and La/Rb or
La/Zr, whereas direct relationships are observed with Sr*
(Sr/

p
(Pr×Nd)) and Zr/Eu ratios (not shown; Tables S-2, S-3).

Sr and Pb isotopes plotted against the same trace element ratios
exhibit opposite correlations to those with Nd isotopes. These
relationships are consistent with the general positive relation-
ship between Sr isotopes and (La, Ba)/(Nb, Zr) ratios in HDFs
(Klein-BenDavid et al., 2014). In comparison, no relationship
is observed between Sr, Nd, or Pb isotopes and major element
compositions; for example, HDF of silicic and low-Mg carbona-
titic compositions (diamond 505 and 508) have almost identical
Sr and Nd isotope ratios, whereas similar silicic HDFs (diamond
502 and 505) exhibit varying isotopic compositions (Fig. 1, 2, 3;
Tables S-1, S-3). These major element-radiogenic isotope sys-
tematics are similar to the decoupling between major and trace
elements of HDFs from different lithospheric provinces world-
wide (Weiss et al., 2022a).

Considering the concentration and unaggregated nature
of nitrogen in the studied diamonds, and a likely average mantle
residence temperature of ≥950 °C (Stachel and Harris, 2008;

Figure 1 Major and trace element composition of HDFmicroinclusions in fibrous diamonds. (a) SiO2þAl2O3–Na2Oþ K2O–MgOþ FeOþ CaO
ternary diagram (in wt. %, on carbon- and water-free basis), showing the compositional range of HDFs in the studied diamonds (see key
for sample symbols). Each datapoint represents an individual microinclusion. Data compared to the global variation between silicic, car-
bonatitic and saline HDF types (shaded area – Weiss and Goldstein, 2018). (b) Primitive mantle normalised (McDonough and Sun, 1995)
trace element patterns of the HDFs compared to microinclusion-bearing diamonds (shaded area – Klein-BenDavid et al., 2010, 2014).
White-filled symbols are data falling between LOQ and LOD (between 10× σ and 3 × σ of the TPBs), and are regarded as qualitative
(see details in the Supplementary Information).
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Weiss et al., 2022a), their formation could take place from
immediately prior to kimberlite eruption up to a maximum of
1 Ga before eruption (Taylor et al., 1996). As the exact timing

is unknown, a conservative correction for the isotopic composi-
tion of the HDFs is the possible range for the diamond emplace-
ment age between 45–550Ma, i.e. the age range of their possible
Canadian host kimberlites (see Supplementary Information).
Initial ratios corrected for 45 Ma are almost indistinguishable
from measured values. Initial ratios based on 550 Ma are lower
by 0.0005 to 0.0010 for 87Sr/86Sr compared to the measured
values, 0.00024 to 0.00035 for 143Nd/144Nd, 0.009 to 0.116 for
206Pb/204Pb, 0.0005 to 0.0068 for 207Pb/204Pb, and 0.008 to 0.073
for 208Pb/204Pb (Fig. 4). The important observation, however,
is that the relationships and variations between Sr, Nd and Pb
isotopes and between isotopes and trace element compositions
persist and all samples have relatively high 207Pb/204Pb (Figs. S1
and S2). This remains even if 1 Ga initial ratios are calculated.

HDF Sources

The combined Sr-Nd-Pb isotope signature is not related to
radiogenic ingrowth after HDFs were encapsulated in the dia-
monds during formation, but rather indicates the involvement
of two sources with distinct isotopic compositions. This conclu-
sion is established by the inverse correlation on the Sm-Nd iso-
chron diagram (Fig. 2b), the spectrum of Sr and Nd isotopes and
the linear relationship between Pb and Sr isotopes that indicate
mixing of different endmember components (Fig. 2a and Fig. 3).
The covariations of isotopic composition and trace element ratios
further support mixing of two components (e.g., Fig. 2c). Klein-
BenDavid et al. (2010, 2014) also argued for two-component
mixing to explain the Sr isotope variations of HDFs, and sug-
gested the involvement of convecting mantle and ancient sub-
continental lithospheric mantle (SCLM). Indeed, an SCLM that
experienced long-term LREE enrichment (low Sm/Nd) and
increased Rb/Sr andU/Pb is required to explain the unradiogenic
Nd and radiogenic Sr and Pb isotope endmember compositions
of the HDFs studied here. However, the radiogenic 207Pb/204Pb
values of all of these HDFs, including those with Sr-Nd isotope
compositions closest to BSE values, are significantly higher than
the compositions of recent ocean island basalts. This is evidence
of elevated U/Pb ratios in early Earth history for the source of
both endmembers, and precludes major involvement of mantle
of asthenospheric origin (Fig. S-1).

Figure 2 Isotopic and trace element relationships of the HDFs.
(a) 143Nd/144Nd vs. 87Sr/86Sr. Also plotted are the range of South
African kimberlite and lamproites (Becker and Le Roex, 2006), bulk
silicate Earth (BSE; Zindler and Hart, 1986), and the vector toward
continental crust (CC arrow; Rudnick, 1990; Thompson et al., 2007).
(b) 143Nd/144Nd vs. 147Sm/144Nd; the latter is calculated from isotope
dilution data (Table S-3). (c) 143Nd/144Nd vs. primitive mantle nor-
malised La/NbPM ratios; the inset includes diamond 516, which
deviates from the general trend. Error bars represent ±2 SE and
in most cases are smaller than the symbols.

Figure 3 Relationship between Pb and Sr isotope compositions
of the HDFs. 206Pb/204Pb ratios are shown in the main panel and
207Pb/204Pb ratios in the inset. Error bars represent ±2 SE, which
in most cases are smaller than the symbols.
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Figure 4a shows that the Sr and Nd isotope spectrum of
the SCLM, as inferred by global whole rock xenolith data from
cratons, covers the complete isotopic range of the HDFs studied
here. A comparable picture is revealed for 208Pb/204Pb and
206Pb/204Pb variations, but not for 207Pb/204Pb, which reach
higher values than recorded in SCLM whole-rock initial values
(Fig. 4a,b). There is, however, evidence of ancient U enrichment
in SCLM-derived xenoliths (Cohen et al., 1984; Davies and
Lloyd, 1986) and magmas (i.e. Western Australian lamproites;
Fraser et al., 1985) that are characterised by highly radiogenic
207Pb/204Pb at relatively unradiogenic 206Pb/204Pb compositions,
some of which overlap the HDFs values.

A strong connection has previously been established
between hydrous/carbonated eclogite lithologies (and pyroxe-
nites) with silicic to low-Mg carbonatitic HDF types, comparable
in composition toHDFs in the present study (Weiss et al., 2022a).
The Sr-Nd-Pb isotope compositions of eclogite and pyroxenite
xenoliths (occasionally diamondiferous) are extremely diverse,
from highly unradiogenic to highly radiogenic values (e.g.,
Jacob, 2004; Xu et al., 2009; Aulbach et al., 2019). Although there

is limited available data from such xenoliths, their isotope varia-
tion overlaps most of the SCLM spectrum and HDFs (Fig. S-2).
In addition, a large isotopic range was documented for eclogites
from individual locations (Jacob, 2004; Aulbach et al., 2019). Such
sources for the HDF studied here can explain their silicic to low-
Mg carbonatitic major element compositions and their varying
radiogenic isotope signatures (Fig. 1a and Fig. 4; Table S-1
and S-3).

Previously published Sr-Nd (±Pb) isotope data are limited
to 5 additional microinclusion-bearing diamonds from Canada,
Botswana and Congo, all with silicic to low-Mg carbonatitic HDF
compositions (Klein-BenDavid et al., 2010, 2014; Timmerman
et al., 2019). Figure 4 shows that these HDFs overlap and expand
the isotopic trends of the studied HDFs towards more unradio-
genic Nd and radiogenic Sr and Pb compositions. These Sr-Nd
isotope ratios overlap sediments derived from old continental
crust (Goldstein and Jacobsen, 1987), suggesting their possible
contribution to the formation of HDFs through subduction.
Such a connection is consistent with the correlation between
La/Nb and isotopes (Fig. 2c and Fig. 6e in Klein-BenDavid et al.,

Figure 4 Sr-Nd-Pb isotope compositions of HDF in fibrous diamonds. (a) 143Nd/144Nd vs. 87Sr/86Sr. Measured values (large coloured symbols)
and initial ratios corrected for amaximumpossible emplacement age of 550Ma (small coloured symbols) are presented. Available published
data for 5 diamonds from Botswana (UNK; all duplicate analyses are presented), Snap Lake (SL) and Congo (CNG) are also shown (small open
symbols; Klein-BenDavid et al., 2010, 2014). The isotopic range of cratonic continental lithosphere determined on whole rock xenolith data
(dotted white area - measured values, and lined shaded area – age corrected initial values, based on the PetDB database; http://www.
earthchem.org/petdb), and BSE (Zindler and Hart, 1986) are presented for comparison. (b) 208Pb/204Pb vs. 206Pb/204Pb, and (c) 207Pb/204Pb
vs. 206Pb/204Pb; symbols and areas as in (a). The locus of compositions that developed undisturbed from primitive-mantle lead since
Earth’s formation is shown for reference (geochron; long dashed black line); the regression line through all the HDF data yields an age
of 3214 ± 369 Ma (dashed orange line and 95 % confidence interval).
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2014), implying the involvement of a recycled component, and
may also explain the radiogenic 207Pb/204Pb signature of all of
these HDFs (Fig. 4c, Fig. S-1 and Fig. 8 of Klein-BenDavid et al.,
2014). Remarkably, the 207Pb/204Pb vs. 206Pb/204Pb composition
of the HDFs define a positive trend (Fig. 4c). Klein-BenDavid
et al. (2014) suggested that the Pb isotope signature of the most
radiogenic HDF indicates a multi-stage evolution of its source,
characterised by an Archean enrichment event, which increased
the U/Pb ratios (μ), followed by a more recent event that led to
lower μ. Although there is no unique solution to explain the data,
such a scenario fits all of the HDF data. Thus, the 207Pb/204Pb vs.
206Pb/204Pb trend may be interpreted as an age that corresponds
to 3214 ± 369 Ma (Fig. 4c). However, this trend is more likely the
manifestation ofmixing of two isotopic endmember source com-
ponents that differ in age significantly. CalculatedNd TDMmodel
ages for the HDFs sources suggest an age range between 0.5 and
1.8 Ga (although these ages are minimum estimates because
HDF formation produces LREE enrichment which reduces the
model ages; Goldstein et al., 1984). The most unradiogenic
HDF sample reported by Klein-BenDavid et al. (2014) yields a
TDM of 2.6 Ga.

In summary, the relationships between isotope and trace
element ratios of silicic to lowMg-carbonatitic HDFs indicate the
involvement of two distinct eclogite/pyroxenite-dominated
sources within the continental lithosphere: one with a relatively
primitive Sr-Nd isotope composition and another with unradio-
genic Nd and radiogenic Sr and Pb isotope ratios. We propose
that the latter source reflects an old metasomatic event in the
Canadian continental root by fluid addition from a subducting
slab (most probably involving the Slave Craton in the
Paleoproterozoic, ≥1.8 Ga, e.g., Wopmay collisional event).
Near-solidus melting of this source during a subsequent
tectono-magmatic event led to the formation of HDFs with
unradiogenic Nd and radiogenic Sr and Pb isotope ratios.
Simultaneous melting of a more primitive source introduced
HDFs with less enriched Sr-Nd isotope signature, and mixing
of the two HDF endmember components formed silicic to
low-Mg carbonatitic HDFs with the observed range of Sr-Nd-
Pb isotope compositions (Fig. 4). Formation of either HDF end-
member in one of the sources, which percolates through and
interacts with the other source, would lead to equivalent results.
Either way, the HDFs’ host diamonds crystallised during this
event. The relatively short mantle residence time of these dia-
monds, indicated by their unaggregated nitrogen, suggests that
the Sr-Nd-Pb isotopic signature of the subducting component,
most notably the relatively elevated 207Pb/204Pb was formed in,
or was added to, the cratonic continental lithosphere long before
HDF formation and inclusion in diamonds. Comparable isotope-
trace element relationships in silicic- to low-Mg carbonatitic-
bearing diamonds from different continents suggest that the
same processes, including sediment subduction, impacted other
SCLM provinces producing the source of diamond-forming
fluids.
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