

© 2023 The Authors Published by the European Association of Geochemistry

A magmatic copper and fluid source for the sediment hosted Mount Isa deposit

I.V. Sanislav, R. Mathur, P. Rea, P.H.G.M. Dirks, B. Mahan, L. Godfrey, H. Degeling

Supplementary Information

The Supplementary Information includes:

- Methodology
- ➤ Table S-1
- ▶ Figures S-1 to S-4
- Supplementary Information References

Methodology

Ninety chalcopyrite samples were collected from drill holes across well-known ore bodies and the low-grade envelope around the Mt Isa deposit. The textural position of chalcopyrite grains targeted for analysis were determined before the sulphides were analysed, and sulphides in similar textural positions were compared. Full log and assay data were available for all drill holes. The sampling strategy involved:

- to sample across the ore body from the core of the ore body to the most distal parts that contain chalcopyrite and to systematically collect samples in relationships with major structures,

- to sample within the same stratigraphic horizon,
- to sample across the entire deposit.

Chalcopyrite grains were handpicked from each sample at the Juniata College, USA and sampled with a drill dremel tool. Between 10 to 50 mg of chalcopyrite was dissolved in 4 ml of ultrapure, heated, aqua regia overnight. Due to the fact copper is a dominant ion in the mineral, no column chemistry was conducted on the chalcopyrite samples as demonstrated in (Mathur *et al.*, 2005; Zhu *et al.*, 2000; Zhang *et al.*, 2020). Isotope analyses were carried out on MC-ICP-MS instruments at various facilities (Penn State University, Washington State University and Rutgers University). Cu isotope values were corrected for mass bias using traditional standard–sample–standard bracketing with the NIST-SRM976 standard reference material and data are presented in the traditional delta notation (in per mil) compared to this standard. The instruments were in wet-plasma mode and the solutions were measured at 200 ng/g. Samples and reference materials matched to within 30 % of the ⁶³Cu signal. QA/QC for the results was monitored using an in-house USA coin (1838 USA CENT δ^{65} Cu = 0.01 ± 0.06 ‰ (n=39 combined from all three locations) and BVHO-2 with values overlapping those reported in the literature.

Supplementary Tables

Sample ID	Section	δ^{65} Cu (‰)	Distance from major	Ore texture
~			structure (meters)	
15	MIM	-0.87	77	veins
MT03	MIM	-0.64	26	veins
30	MIM	-0.63	46.2	fault/shear
MT12	MIM	-0.53	23	fault/shear
MT11	MIM	-0.46	5	fault/shear
12	MIM	-0.41	66	veins
MT10	MIM	-0.34	18	fault/shear
8	MIM	-0.31	20	veins
38	MIM	-0.26	23 1	veins
1	MIM	-0.23	17	fault/shear
10	MIM	-0.22	18	hreccia
2	MIM	-0.21	30	breccia
476	MIM	-0.20	121	veins
52	MIM	-0.17	50	fault/shear
32	MIM	-0.17	221	voine
6	MIM	-0.17	6	voins
31	MIM	-0.17	10	voins
24	MIM	-0.14	10	veins
1006	MIM	-0.12	10	veins
1090 MT01	MIM	-0.12	15	fault/shoar
11	MIM	-0.07	12	lauit/sileal
0	MIM	-0.07	75	veins
9		-0.00	75	discominated
20		-0.06	0	broccio
42		-0.00	59	Dieccia
40		-0.04		foult (choon
470		-0.02	221	lauit/sileal
4/9		-0.02	231	veins
11		-0.02	14/	veins
		0.01	200	foult (choor
MI105		0.01	333	fault/shear
4//		0.02	44.4	lauit/snear
33 MT07		0.02	210	veins
MIU/		0.03	39.0	veins
14		0.04	13	disseminated
480		0.04		veins
	MIM	0.06	80	breccia
M123-4		0.06	112	veins
20		0.06	8/	veins
12		0.06	4U	fault/shear
22		0.07	214.5	veins
29	MIM	0.07	330	veins
3	MIM	0.08	39.6	aisseminated
478	MIM	0.08		veins
10	MIM	0.09	165	veins

Table S-1 δ^{65} Cu values measured from each sample, their distance to the nearest major structure and the ore texture.

SI-2

Sample ID	Section	δ ⁶⁵ Cu (‰)	Distance from major	Ore texture
-			structure (meters)	
7	MIM	0.10	132	veins
17	MIM	0.10	140	veins
26	MIM	0.15	88.4	veins
5	MIM	0.16	221	disseminated
39	MIM	0.17	136	disseminated
24	MIM	0.17	90	veins
4	MIM	0.17	97	disseminated
481	MIM	0.17	100	veins
40	MIM	0.18	89	breccia
15	MIM	0.18	77	veins
51	MIM	0.19	40	breccia
474	MIM	0.20	62	veins
25	MIM	0.23	200	veins
488	MIM	0.24	250	veins
14	MIM	0.24	150	veins
29	MIM	0.25	41	fault/shear
9	MIM	0.26	180	veins
8	MIM	0.26	240	breccia
487	MIM	0.27	210	veins
25	MIM	0.27	230	veins
37	MIM	0.27	150	disseminated
5	MIM	0.31	155.1	veins
23	MIM	0.33	61	veins
483	MIM	0.33	56.1	veins
7	MIM	0.33	68	veins
50	MIM	0.36	41	breccia
13	MIM	0.37	91	veins
41	MIM	0.40	183	breccia
454	MIM	0.40	50	veins
16	MIM	0.42	236	veins
27	MIM	0.43	210	veins
42	MIM	0.43	221	breccia
458	MIM	0.44	25	breccia
MT30	MIM	0.47	63	veins
MT02	MIM	0.52	115.5	veins
462	MIM	0.55	320	veins
27	MIM	0.59	97	veins
6	MIM	0.60	95.7	veins
GF23	MIM	0.61	180	veins
MT18	MIM	0.62	236	veins
451	MIM	0.68	250	veins
45	MIM	0.70	193	veins
452	MIM	0.70	180	veins
28	MIM	0.79	211	veins
2	MIM	0.83	242	breccia
MT27	MIM	0.88	273	disseminated

Supplementary Figures

Figure S-1 Schematic representation of the two models used to explain the formation and the close spatial relationship between the Cu and Zn-Pb-Ag mineralisation at the Mount Isa deposit. The top image illustrates the syngenetic and diagenetic models whereas the bottom image illustrates the epigenetic model.

Figure S-2 Oblique view showing the distribution of samples analysed for Cu isotopes and the δ^{65} Cu values (coloured circles, corresponding to scale bar in the top right) in relationship to the main structures across the entire deposit and the surrounding low-grade envelope.

Figure S-3 Histogram showing the relationship between δ^{65} Cu and the distance to the nearest major structure.

Figure S-4 Rayleigh distillation models using fractionation factors from Pekala *et al.* (2011) (alpha=1.0005) generate the observed range of fractionation measured of Mt Isa chalcopyrite for high values of f. This modelling suggests that there was an effective removal and deposition of copper in the chalcopyrite. The average δ^{65} Cu of Proterozoic basalts is +0.14‰ (Liu *et al.*, 2015) whereas the average δ^{65} Cu of the BSE is +0.07‰ (Moynier *et al.*, 2017).

Supplementary Information References

- Liu, S.-A., Huang, J., Liu, J., Wörner, G., Yang, W., Tang, Y.-J., Chen, Y., Tang, L., Zheng, J., and Li, S. (2015) Copper isotopic composition of the silicate Earth. *Earth and Planetary Science Letters* 427, 95-103. <u>https://doi.org/10.1016/j.epsl.2015.06.061</u>
- Mathur, R., Ruiz, J., Titley, S., Liermann, L., Buss, H., and Brantley, S. L. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. *Geochimica et Cosmochimica Acta* 69, 5233-5246. <u>https://doi.org/10.1016/j.gca.2005.06.022</u>
- Moynier, F., Vance, D., Fujii, T., and Savage, P. (2017) The isotope geochemistry of zinc and copper. *Reviews in Mineralogy and Geochemistry* 82, 543-600. <u>https://doi.org/10.2138/rmg.2017.82.13</u>
- Pekala, M., Asael, D., Butler, I. B., Matthews, A., and Rickard, D. (2011) Experimental study of Cu isotope fractionation during the reaction of aqueous Cu(II) with Fe(II) sulphides at temperatures between 40 and 2008C. *Chemical Geology* 289, 31–38. <u>https://doi.org/10.1016/j.chemgeo.2011.07.004</u>
- Zhang, Y., Bao, Z., Lv, N., Chen, K., Zong, C., and Yuan, H. (2020) Copper isotope ratio measurements of Cu-dominated minerals without column chromatography using MC-ICP-MS. *Frontiers in Chemistry* 8, 609. <u>https://doi.org/10.3389/fchem.2020.00609</u>
- Zhu, X. K., O'Nions, R. K., Guo, Y., Belshaw, N. S., and Rickard, D. (2000) Determination of natural Cuisotope variation by plasma-source mass spectrometry; implications for use as geochemical tracers. *Chemical Geology* 163, 139-149. <u>https://doi.org/10.1016/S0009-2541(99)00076-5</u>