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The timing and formation of Earth’s first continents during the Archean are subjects
of significant debate. By examining titanium isotope variations in Archean Tonalite-
Trondhjemite-Granodiorite (TTG) rocks and using advanced thermodynamic
modelling, we can narrow down the processes involved and emphasise the role of
mafic precursor compositions. In our study of Eoarchean Isua metabasalts and
Itsaq tonalites in southern West Greenland, we observed a pattern of increasing
Ti isotope enrichment with higher SiO2 content, resembling the compositions found
in modern subduction zone rocks. Our modelling suggests that the Ti isotope varia-
tions in TTGs can be best explained by a combination of partial melting of low TiO2

metabasalts and subsequent crystallisation of tonalitic magmas, resulting in heavier
Ti isotopes. Thismeans that Ti isotopes help us distinguish the contributions of variousmafic sources and fractional crystallisation
during TTG formation. In the case of Itsaq tonalites and many other Eoarchean TTGs, low TiO2 tholeiitic metabasalts with
arc-like characteristics likely represent the mafic source rocks, suggesting the formation of some of Earth’s earliest continental
crust within a proto-subduction zone setting.

Received 22 June 2023 | Accepted 6 November 2023 | Published 22 December 2023

Introduction

Remnants of Archean juvenile continental crust are preserved in
the form of sodic granitoids collectively known as Tonalite-
Trondhjemite-Granodiorites (TTG). There is ongoing debate
about the origin of these incomplete remnants, leading to varying
interpretations over the responsible tectonic regime. TTG forma-
tion hypotheses are broadly divided between two end members
that involve partial melting of thickened, hydrated mafic crust in
1) a horizontal tectonic regime, possibly analogous to modern
subduction (e.g., Foley et al., 2002), or 2) a non-uniformitarian
regime such as oceanic plateaux (e.g., Nair and Chacko, 2008).
Furthermore, despite extensive geochemical and experimental
evidence supporting polybaric dehydration melting of hydrated
mafic crust as a formation mechanism of juvenile TTG magmas
(e.g., Barker and Arth, 1976; Rapp et al., 1991), many TTGs have
undergone subsequent fractional crystallisation (e.g., Laurent
et al., 2020), obscuring the nature of their mafic protolith.

Mass dependent isotope variations of titanium (expressed
as δ49/47Ti) have recently been utilised as a novel tool to inves-
tigate magmatic differentiation (Millet et al., 2016; Greber et al.,
2017; Deng et al., 2019; Aarons et al., 2020; Hoare et al., 2020),

and can be applied to test petrogeneticmodels of TTG formation.
Based on these studies it has been postulated that titanium iso-
tope fractionation is mainly driven by the sequestration of light
isotopes into Fe-Ti oxides (ilmenite, magnetite, and rutile) where
Ti occupies VI-fold coordination (e.g.,Hoare et al., 2022; Johnson
et al., 2023). Consequently, melts in equilibrium with these
phases are enriched in heavy Ti isotopes, which occupy lower
coordination (VI- and V-fold). Furthermore, δ49/47Ti variations
of evolved magmas from different geodynamic settings show
differences (Fig. 1). Silicic melts from reduced, H2O-poor, Ti-rich
intra-platemagmas have higher δ49/47Ti relative to arcmagmas at
a given SiO2 content (Fig. 1; Deng et al., 2019; Hoare et al., 2020).
In alkaline intra-plate magmas, larger Ti isotope fractionation is
driven by significant Fe-Ti oxide crystallisation, in contrast to
hydrous subduction zone magmas where only low Ti magnetite
is present (Hoare et al., 2022; Johnson et al., 2023). The uniform
Ti isotope composition in Archean shales and comparable frac-
tionation patterns in Archean TTGs have sparked the hypothesis
that substantial felsic crust has existed since 3.5 billion years ago,
potentially indicating past plate tectonics (Greber et al., 2017;
Zhang et al., 2023). Conversely, non-subduction related
magmatism also produces felsic rocks with heavy Ti isotope
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compositions (Deng et al., 2019) and the Ti isotope composition
of sedimentary archives may be biased viamechanical processes
(Klaver et al., 2021; Saji et al., 2023). These factors challenge the
reliability of Archean sediments as Ti isotope archives
of the continental crust. A subsequent study by Aarons et al.
(2020) observed that SiO2 vs. δ49/47Ti covariations within 4.02 Ga
Idiwhaa gneisses from the Acasta Gneiss Complex, Slave craton,
Canada (Fig. 1a), mirror the trend of alkaline intra-plate mag-
mas, whereas post-4.02 Ga TTGs exhibit δ49/47Ti variations com-
parable to modern calc-alkaline magmas (Aarons et al., 2020).
This dichotomy may imply a transition to subduction style tec-
tonics at the Hadean-Archean boundary (Aarons et al., 2020).
The usefulness of Ti isotopes in understanding early Earth geo-
dynamics is challenging due to the lack of information about
Hadeanmafic crust composition (Nebel et al., 2014) and differing
opinions on the ideal mafic protolith for Archean TTG magmas
(Smithies et al., 2009; Nagel et al., 2012). Accurate knowledge of
mafic protoliths is crucial because the early Archean mantle had
a distinct Ti isotope composition from today (Deng et al., 2023),
and the composition of the parental melt significantly influences
Ti isotope fractionation during magmatic processes (Deng et al.,
2019; Hoare et al., 2020). Elucidating the composition of the
mafic protolith may thus provide tighter constraints of the geo-
dynamic setting of TTG formation.

Here we present δ49/47Ti data of well characterised
Eoarchean (3.8–3.7Ga) tholeiiticmetabasalts from the Isua supra-
crustal belt (ISB) and Palaeo- to Eoarchean (3.9–3.2 Ga) tonalites
and intra-crustal differentiates (pegmatites and augen gneisses)
from the adjacent Itsaq Gneiss Complex (IGC) of southern
West Greenland. The Itsaq meta-tonalites are found within
low-strain zones in the IGC as almost undeformed, single phase
tonalites with partially preserved primary magmatic textures and
mineral assemblages (Nutman et al., 1999) making these samples
ideal to investigate early crustal formation. These rocks are inter-
preted to originate from polybaric partial melting of thickened,
arc-like mafic crust followed by fractional crystallisation of pooled
melts in mid-crustal plutons, within a geodynamic regime analo-
gous to a modern subduction setting (Nagel et al., 2012;
Hoffmann et al., 2014). Others argue against such an origin,
favouring non-uniformitarian processes (Rollinson, 2022). We
use Ti isotope variations in ISB and IGC rocks, and detailed
thermodynamic modelling, to unravel the influence of mafic
source composition and the effects of partial melting and crystal-
lisation processes on the geochemistry of Archean TTGs.

Results

Titanium isotope measurements are reported as δ49/47TiOL-Ti

(‰)= [49/47Tisample/49/47TiOL-Ti− 1] * 103, which is the deviation
in parts per thousand of the 49Ti/47Ti ratio relative to Origins
Laboratory Ti (OL-Ti), the recognised Ti reference material.
The δ49/47Ti values of ISB tholeiitic metabasalts show limited
variation (þ0.01 to þ0.09 ‰). Non-gneissic IGC tonalites dis-
play δ49/47Ti compositions between þ0.18 and þ0.88‰ (Fig. 1).
Migmatised tonalites and intra-crustal differentiates (augen
and pegmatitic gneisses) also show substantial variability in
δ49Ti; þ0.25 to þ0.78 ‰, and þ0.55 to þ1.11 ‰, respectively.
To assess the extent of Ti isotope fractionation during partial
melting of different mafic source compositions and magmatic
differentiation we utilise constraints from thermodynamic phase
equilibria modelling combined with relevant mineral-melt Ti
isotope fractionation factors. A detailed summary of our results
and modelling are provided in the Supplementary Information.

Ti Isotope Fractionation During Partial
Melting of Different Mafic Protoliths

Polybaric melting of a single mafic source has been invoked to
explain the chemical diversity of TTG magmas. However, given
the sensitivity of Ti isotope fractionation to parental melt com-
position (Deng et al., 2019; Hoare et al., 2020), partial melting
of diverse mafic sources of differing TiO2 contents will likely
generate melts with contrasting Ti isotope compositions. Poly-
baric melting of both TiO2-poor (∼0.6–0.7 wt. %) Isua tholeiitic
metabasalts, and intermediate TiO2 (∼1 wt. %) plateau basalts
produce tonalitic melts (SiO2> 60 wt. %) with δ49/47Ti between
∼þ0.10 to þ0.26 ‰ (Fig. 2). The partial melt compositions in
these scenarios define shallow trends of increasing δ49/47Ti with
increasing SiO2 and decreasing TiO2 (Fig. 2a). For low Al meta-
basalts, the absence of residual plagioclasemeans that, at a given
melt fraction and δ49/47Ti, melt compositions are shifted to lower
SiO2 (Fig. 2a). Low pressure (0.8 GPa) melting of E-MORB
(∼1.5 wt. % TiO2), produces a steep trend with elevated δ49/47Ti
at lower SiO2 and higher TiO2 (Fig. 2b). Melting E-MORB at
higher pressure (1.3 GPa) produces a notably shallower trend.
However, irrespective of melting pressure, higher TiO2 mafic
sources produce melt compositions that are generally too
TiO2-rich at a given SiO2 content (Fig. 2b,d). Conversely, the

Figure 1 δ49/47Ti compositions of ISB metabasalts, IGC tonalites and intra-crustal differentiates, with other Hadean-Archean rocks,
compared to Phanerozoic lavas from different tectonic settings versus (a) SiO2 and (b) TiO2. Literature sources are given in the
Supplementary Information, Table S-11.
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impact melt scenario of Johnson et al. (2018) for the Hadean
Idiwhaa gneisses, would involve low pressure (0.1 GPa) melting
of a TiO2-rich protolith (∼2.7 wt. %) producing amphibole-free
residues and high SiO2-TiO2 melts with significantly higher
δ49/47Ti (∼þ0.36 to þ0.54 ‰) relative to the other melting
scenarios (Fig. 2b,d). However, it is noteworthy that this model
produces, at best, an imperfect match to the Idiwhaa data
(Fig. 2b,d). The varying magnitude of Ti isotope fractionation
during partial melting is largely driven by competition between
amphibole and Fe-Ti oxides for the elemental budget of Ti
(Fig. S-1; Supplementary Information). Amphibole is the dom-
inant Ti-bearing phase during melting of low to intermediate
Ti mafic sources, whereas Fe-Ti oxides, which possess larger Ti
isotope fractionation factors, are mostly absent (Fig. S-1;
Supplementary Information). Higher parental melt TiO2 con-
tents enable greater abundances of Fe-Ti oxides in the melting
residues (Fig. S-1). This results in a greater magnitude of Ti iso-
tope fractionation (Fig. 2), with reduced fractionation at higher
pressure as rutile possesses a smaller fractionation factor relative
to ilmenite (Hoare et al., 2022; Rzehak et al., 2022). Therefore, the
shallow positive correlation between δ49/47Ti and SiO2 shared by
modern calc-alkaline lavas and Archean TTGs (Fig. 1a) could be
largely coincidental, with the modest fractionation in TTGs
reflecting the dominance of amphibole on the Ti budget during
partial melting. Furthermore, the dominant role of amphibole
likely precludes a TiO2 -rich (>1 wt. %) mafic source for Itsaq

tonalites and other Eoarchean TTGs or requires very low or high
melting pressures if TiO2-rich mafic sources are invoked (Fig. 2).
Nevertheless, polybaric melting of low-TiO2 metabasalts can
only reproduce the δ49/47Ti variation for TTGs with δ49/47Ti up
to ∼þ0.3 ‰ (Fig. 2a,c), suggesting that an additional process
is required to explain δ49/47Ti above that value.

Ti Isotope Fractionation During
Magmatic Differentiation and Crustal
Re-Working

While partial melting of tholeiitic metabasalts accounts for many
major and trace element characteristics of IGC tonalites (cf.
Hoffmann et al., 2014), our modelling reveals that partial melting
alone cannot reproduce the complete range of δ49/47Ti in TTGs
(Fig. 2). The differentiation of intermediate tonalitic/andesitic
liquids is fundamental to generating evolved magmas within
the Earth’s crust (e.g.,Marxer andUlmer, 2019), and similar proc-
esses have been invoked to explain the compositional diversity of
TTG magmas (e.g., Laurent et al., 2020).

Equilibrium crystallisation models of tonalitic magmas
(∼62–66 wt. % SiO2) at 0.5 GPa with an initial δ49/47Ti ranging
between ∼þ0.2 to þ0.3 ‰ produces evolved melts (>70 wt. %
SiO2) with δ49/47Ti values up to∼þ0.6‰ (Fig. 3). Fractional crys-
tallisation at the same pressure produces TTGmelts with heavier

Figure 2 δ49/47Ti versus SiO2 and TiO2 for partial melting of high and low Al Isuametabasalts at 0.8–1.6 GPa (a and c); and partial melting of
E-MORB and primitive plateau basalt at 0.8–1.3 GPa (b and d) superimposed on to δ49/47Ti data for Hadean-Archean TTGs (pink, white and
grey symbols; see Fig. 1 for the legend). Shaded grey field represents δ49/47Ti range of primitive Archean amphibolites (Mg#> 60) defined by
a 0.95 probability density contour. Black symbols indicate the starting composition for each model. Symbols on modelled trends represent
melting intervals between 50–10 %. Modelling details are given in the Supplementary Information.
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δ49/47Ti up to þ0.8 ‰ (Fig. 3). Titanium isotope fractionation
during differentiation of tonalitic magmas is largely controlled
by ilmenite, and to a lesser extent, amphibole, and biotite.
Consequently, at a given temperature, the bulk Ti solid-melt
fractionation factor (αsolid-melt) is larger for crystallisation com-
pared to partial melting, where amphibole has a greater
influence on αsolid-melt (Supplementary Information). Equili-
brium crystallisation is responsible for most of the δ49/47Ti
variation in IGC tonalites and other Archean TTGs, spanning
approximately þ0.3 to þ0.6‰ (as seen in Fig. 2d). This process
likely occurred within upper crustal crystal mushes, as suggested
by Laurent et al. (2020). The scatter of some TTGs with
δ49/47Ti>þ0.3 ‰ (Fig. 3) can be explained by differentiation
of tonalitic magmas of differing initial SiO2 and TiO2 contents,
themselves the products of variable polybaric melting (Fig. 2).

There is an additional complication that migmatised IGC
tonalites and intra-crustal differentiates generally exhibit more
scatter in their δ49/47Ti compositions compared to non-gneissic
tonalites, with elevated δ49/47Ti at lower SiO2 and higher TiO2

(Figs. 2, 3). Furthermore, intra-crustal differentiates display
significantly heavier Ti isotope compositions above þ1 ‰

(Figs. 2, 3). These samples are characterised by superchondritic
Nb/Ta (21–37), suggesting the fractionation of Ti-bearing phases
like rutile, titanite or ilmenite (Hoffmann et al., 2011). Moreover,
these samples were identified in the field as being amphibolite
facies rocks that had previously experienced prior modification
by melts or fluids (Nutman and Bridgwater, 1986). Given that
intra-crustal differentiates are ∼200 Myr younger than the major-
ity of Istaq TTGs, the scatter in δ49/47Ti could result from a sub-
sequent intra-crustal melting event where additional Ti isotope
fractionationwas driven by rutile or ilmenite. Intra-crustal melting
might have resulted from crustal thickening, causing the re-
melting of pre-existing felsic, likely isotopically heavy, portions
of the lower continental crust. These highNb/Ta felsicmelts could
have then infiltrated the mid-crust (Hoffmann et al. 2011).

The Influence of Source Depth on the
Ti Isotope Evolution of TTG Magmas

Based on δ49/47Ti systematics alone it is difficult to fully establish
the control of melting pressure, which dictates the stable phase
assemblages during partial melting. However, the full spectrum

of variations in trace element ratios (e.g., Zr/Sm, Gd/Yb and
Nb/Ta) in IGC tonalites implies the presence of garnet and a
Ti-bearing phase (such as rutile or ilmenite) in the melting
residuum, and hence polybaric melting (e.g., Nagel et al., 2012;
Hoffmann et al., 2014). Dy/Dy* is an effective discriminator
for the roles of amphibole, garnet, and source LREE (Light Rare
Earth Element) contents in magmatic processes (Davidson et al.,
2013). When combined with phase equilibria modelling it can
provide quantitative estimates on source mineralogy and melt-
ing depth during TTG formation (Fig. 4). The negative correla-
tion between Dy/Dy* and δ49/47Ti is evidence of the dominant
role for amphibole in dictating the δ49/47Ti composition of TTGs
(Fig. 4). The majority of Eoarchean TTGs with δ49/47Ti<þ0.3‰
do not require melting pressures greater than 1.6 GPa if low
TiO2, LREE-enriched metabasalts are invoked as the source
(Fig. 4a). Conversely, E-MORB or primitive plateau basalt are
slightly too enriched or depleted, respectively, to fully encapsu-
late the natural TTG data at 0.8–1.3 GPa (Fig. 4b). The absence of
a significant negative Dy/Dy* for the Idiwhaa gneisses suggests
a reduced role for amphibole and thus their higher δ49/47Ti are
primarily influenced by Fe-Ti oxides. The δ49/47Ti-Dy/Dy* sys-
tematics indicates that the formation of Eoarchean TTGs may
not require high pressure eclogite facies conditions (≥2 GPa)
for partial melting. This challenges previous proposals, such as
those by Rapp et al. (2003), that suggested high pressure condi-
tions were required to produce juvenile continental crust.

Geodynamic Implications of Ti Isotope
Variations in TTGs

Our study reveals that the formation of most Eoarchean TTG
magmas likely included low to medium pressure melting of
low TiO2, REE-enriched metabasalts, followed by differentiation
of tonaliticmelts within upper crustal crystalmushes, resulting in
TTGswith higher δ49/47Ti values. The shallowpositive correlation
between δ49/47Ti and SiO2 shared by modern calc-alkaline lavas
and Archean TTGs may be coincidental, rather reflecting the
dominance of amphibole over Fe-Ti oxides during partial melt-
ing. Partial melts of TiO2-rich mafic protoliths result in melts
with elevated δ49/47Ti at a given SiO2 and TiO2 compared to
most Eoarchean TTGs, unless melting occurs at either very low
(0.1 GPa) or higher pressures (>1.3 GPa). Consequently, this

Figure 3 δ49/47Ti versus (a) SiO2 and (b) TiO2 for equilibrium (solid lines) and fractional crystallisation (dashed line) of tonalitic melts at
0.5 GPa compared to δ49/47Ti of Hadean-Archean TTGs (pink, white and grey symbols; see Fig. 1 for legend). Shaded grey field represents
the δ49/47Ti range of modelled 50–10 % partial melts of Isua metabasalts from Figure 2 defined by a 0.95 probability density contour. Black
symbols indicate the starting composition for eachmodel. Symbols onmodelled trends represent crystallisation intervals between 20–80%.
Modelling details are given in the Supplementary Information.
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rules out a TiO2-rich mafic source and a plume origin for most
Eoarchean TTGs. The δ49/47Ti systematics of theHadean Idiwhaa
gneisses necessitate a TiO2-rich source and potentially an intra-
plate origin (Aarons et al., 2020); however, the mechanism
responsible for their heavy Ti compositions could have plausibly
resulted from a combination of very low pressure melting
(Johnson et al., 2018) and fractional crystallisation (Aarons et al.,
2020). In the case of the Eoarchean Itsaq tonalites, the chemistry
of their mafic sources resembles modern tholeiitic arc basalts,
suggesting a potential subduction origin (e.g., Jenner et al.,
2009). If subduction did indeed occur in the Eoarchean, it is likely
not comparable to the present day (Sizova et al., 2015), and
was mostly at or below garnet-amphibolite facies conditions
(∼1–1.5 GPa; e.g., Zhang et al., 2013). The Ti isotope systematics
of Eoarchean Itsaq tonalites are consistent with formation within
a ‘proto-subduction zone’ (e.g., Hoffmann et al., 2014). In this
scenario, low to medium pressure melting of hydrated low
TiO2 arc-like mafic crust is triggered via crustal thickening due
to successive tholeiitic intrusions, which results in destabilisation
and overturn of crustal fragments (e.g., Sizova et al., 2015). It is
worth noting that Ti isotopes are better suited to distinguish
betweenmafic sources and petrogenetic processes during crustal
formation rather than direct proxies for tectonic settings. For
instance, it cannot be ruled out that melting of low TiO2 basalts
may have occurred within subducted or thickened oceanic pla-
teaux (Nair and Chacko, 2008; Johnson et al., 2017). Thus, the
sentiment that the full spectrum of Archean TTGs may have
formed from various geodynamic settings and mafic sources
cannot be completely discounted, and any such inferences need
to be made on a more regional scale.
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1. Samples 
 

All samples measured in this study have previously been characterised for their petrography, major and trace element 

compositions, and, in some instances radiogenic isotopes. Detailed geologic context, petrography, analytical methods, 

and major and trace element compositions of all tonalite and intracrustal differentiates can be found in Hoffmann et al. 

(2011a, b, 2014). The same information for all Isua tholeiitic metabasalt samples is sourced from Polat and Hofmann, 

2003; Hoffmann et al., 2011b. All geochemical data used in this study can be found in Tables S-3 to S-5 and S-9 to S-

11. A brief outline of the sample petrography and major element geochemistry is provided below. 

 

The mafic rocks analysed in this study consist of amphibolite facies tholeiitic to picritic metabasalts and metagabbros 

from the 3800 Ma (previously called the outer arc domain by Jenner et al., 2009) and 3700 Ma (referred to as the inner 

arc domain by Polat and Hofmann 2003) terranes within the Isua Supracrustal Belt (ISB) in southwest Greenland. The 

ISB mafic rocks exhibit low SiO2 (45.9–54.5 wt. %), low TiO2 (0.6–1.1 wt. %), low to moderate Al2O3 (7.9–14.2 wt. %), 

low to moderate Na2O (0.3–3.7 wt. %), moderate to very high MgO (5.2–20.1 wt. %), low K2O (0.01–1.40 wt. %) and 

Mg# from 46.1 to 75.4 (Table S-4). Igneous textures and minerals in these samples are not pre-served on the microscopic 

scale, and major mineral phases present include amphibole (hornblende, anthophyllite), plagioclase, chlorite, epidote, 

quartz, calcite, and titanite (e.g., Polat and Hofmann 2003; Hoffmann et al. 2011a, b). 
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All Itsaq Gneiss Complex (IGC) TTGs analysed in this study were collected in the Isukasia terrane in the southwest 

portion of the Isua Supracrustal Belt (ISB). The samples possess ages that range between 3650 to 3890 Ma (e.g., Næraa 

et al., 2012). Most IGC meta tonalite and trondhjemite samples in our study are well preserved and exhibit magmatic 

textures (e.g., Nutman et al., 1999; Hoffmann et al., 2014). The main mineral assemblages of these rocks comprise 

plagioclase, quartz, amphibole, and biotite with minor titanite, apatite and accessory Fe-Ti oxides. The IGC meta 

tonalites and diorites exhibit moderate to high SiO2 (62.0–72.9 wt. %), low TiO2 (0.2–0.8 wt. %), high Al2O3 (14.8–18.1 

wt. %), high Na2O (4.0–5.9 wt. %), low to moderate MgO (0.5–3.2 wt. %), low to moderate K2O (0.9–2.5 wt. %) and 

Mg# from 31.9 to 49.5 (Table S-5). 

 

2. Methods 
 

2.1. Chemical separation of Ti 

 

For the duration of this study sample preparation first requires digestion of 20–60 mg (amount is dependent on the TiO2 

concentration of the sample to achieve at least 5 μg of natural Ti) of fine-powdered silicate rock sample or geo-standard 

in concentrated 1:1 mixture of HNO3 and HF at 130 °C for 72 hours. An additional 2 ml of concentrated HNO3 is then 

added and evaporated to incipient dryness. Following this step, each sample is taken up in 500 μl of concentrated HNO3 

and dried down, this step is repeated 3 times. The sample is then taken up in 6 M HCl with the addition of ~40 mg of 

H3BO3 into the solution to ensure the removal of any fluorides that would sequester Ti out of the sample solution. Finally, 

an aliquot containing 5 μg of Ti is taken from the sample solution and mixed with a 47Ti-49Ti double spike in a 48:52 

ratio based on the calibration of Kommescher et al. (2020) and taken up in 5 mL 12 M HNO3 prior to column chemistry. 

 

Titanium is separated from the sample matrix using Eichrom N, N, N, N’ tetra-n-octyldiglycolamide (DGA) resin. The 

procedure adopted in this study is based on the method initially developed by Zhang et al. (2011) and later modified by 

Hoare et al. (2020) and Millet et al. (2016). The method is outlined in Table S-1. This study used a double pass chemistry. 

Following purification, Ti fractions are treated with a 1:1 mixture of concentrated HNO3 and 30 % H2O2 to remove any 

organic material. 

 
Table S-1 Summary of ion exchange chromatography procedure for Ti purification of samples for MC- ICP-MS 

analysis 

 

Step Acid Volume (mL) 

Cleaning Milli-Q 20 

 3M HNO3 10 

Conditioning 12M HNO3 10 

Introduction Sample in 12M HNO3 5 

Wash 12M HNO3 20 

Collect Ti 12M HNO3 + 1 wt. % H2O2 10 

Cleaning Milli-Q 20 

 3M HNO3 10 
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2.2. Ti double spike MC-ICP-MS measurements and data reduction 

 

Titanium isotope composition measurements of reference solutions OL-Ti and Col-Ti were carried out using a Nu 

Plasma II MC-ICP-MS at the Cardiff Earth Laboratory for Trace Element and Isotope Chemistry (CELTIC), School of 

Earth and Environmental Sciences, Cardiff University to check the double spike calibration. Samples and geo-reference 

materials were measured using either a Thermo Fischer Neptune XT MC-ICP-MS at the Deutsches Bergbau Museum, 

Bochum or a Thermo Fischer Neoma MC-ICP-MS at Freie Universität Berlin. For measurements on the Nu Plasma II 

samples were introduced via an Cetac Aridus II desolvating nebuliser (flushed with Ar), whereas in for sessions using 

a Themo Fischer Scientific Neptune and Neoma an ESI Apex Omega was used (flushed with Ar and N2). 

 

Prior to measurements purified samples were diluted to concentrations of 250 ng/g (Neptune XT and Neoma) or 1000 

ng/g (Nu Plasma II) of Ti Samples were taken up in 0.3 M HNO3 + 0.005 M HF solution. All instruments were fitted 

with nickel (Ni) jet-sampler and Ni (H) skimmer cones. The measurements were performed in medium resolution mode, 

with a resolution power (5-95 % peak definition, ΔM/M) in the range of ~ 5,000 or up to ~ 8,000 when using the Thermo 

Fischer Neoma MC-ICP-MS. Such resolution was sufficient to clearly identify the peak shoulders of the Ti isotopes, 

and simultaneously to counter the effect of non-resolvable polyatomic interferences such as 28Si19F and 14N16O2H+ that 

can be introduced via the analyte solution (0.3 M HNO3 – 0.005 M HF), which give inference on 47Ti. The ‘peak shoulder’ 

is used to define an interference-free mass range on the respective mass, as polyatomic interferences are typically heavier 

than the respective mass. Titanium ion beam intensity ranged from 20-60 V on amplifiers with 1011 Ω resistors in their 

feedback loop. Ca interference on 46Ti and 48Ti was monitored at mass 44 and corrected during data reduction if 

necessary. Measurements of an individual sample consisted of 60-80 cycles with an integration time of 8 s. To account 

for small unresolved polyatomic interferences on 47Ti due to the presence of F from the sample solution and Si from the 

torch (28Si19F), samples are bracketed by measurements of the double spiked OL-Ti standard solution. 

 

The compositions of Ti reference solutions (OL-Ti and Col-Ti) and geo-reference materials (JB-2, BCR-2, AGV-1, G2) 

are in good agreement with previous published values (see Tables S-1 and S-2). The 49/47Ti value for AGV-1 reported 

here is heavier than the bulk of previously reported values but is within error of the recently published value of Storck 

et al. (2023; Table S-2) which could suggest this geo-reference standard is homogenous for Ti isotopes. Additionally, 

49/47Ti values presented here for JA-2 and JG-2 differ from the values obtained by He et al. (2020; Table S-2). Given 

the lack of data for these two standards it is currently unclear if these offsets are the result of sample heterogeneity or 

inter laboratory bias. Further digestions and measurements of these geo reference materials will be required to confirm 

this. It should be noted that the samples ran on Neptune XT MC-ICP-MS at the Deutsches Bergbau Museum possess 

slightly larger 95 % c.i. values as during this session samples were analysed for fewer cycles (60 as opposed to 80). The 

2 internal precision of our 49/47Ti measurements, expressed as 95 % c.i. ssb (confidence interval; standard-sample-

bracketing) is generally within ±0.020 - 0.030 ‰. The geo-reference materials and Ti reference solutions measured over 

the course of this study yield a pooled 2s intermediate precision of ±0.025 ‰, which we take as the best estimate of the 

uncertainty of our measurements. Total procedural blanks were always below 20 ng Ti, thus contributing less than 0.1% 

to the total processed sample Ti and are therefore negligible. 
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Table S-2 Summary of Ti isotope compositions of Ti reference solutions and geologic reference materials. 

 

Reference solution/Geo-

reference material 

δ49Ti (‰) 

 

95 % c.i. 2 s.d. n 

OL-Ti -0.010 0.004 0.025 32 

Col-Ti 0.184 0.006 0.034 19 

FUB-Ti  

(AA-Ti solution) 

-0.162 0.006 0.034 12 

BCR-2 -0.013 0.010 0.008 4 

JB-2 -0.038 0.012 0.029 4 

G-2 0.477 0.013 0.025 3 

JA-2 0.137 0.020 - 1 

AGV-2 0.134 0.018 - 1 

JG-2 1.045 0.020 - 1 

 

Table S-3 Summary of Ti isotope compositions of measured samples. 

 

Sample Rock type 

 

δ49Ti (‰) 

 

95 % c.i. 2 s.d. n 

2000-10 Metabasalt 0.078 0.017 0.038 2 

2000-13 Metabasalt 0.020 0.012 - 1 

2000-4 Metabasalt 0.024 0.020 - 1 

2000-6 Metabasalt 0.006 0.026 - 1 

2000-7 Metabasalt 0.031 0.027 - 1 

2000-8 Metabasalt 0.046 0.042 - 1 

jeh-2007-11 Metabasalt 0.079 0.019 - 1 

2007-01 Metagabbro 0.049 0.015 0.030 2 

2007-08 Pillow basalt 0.040 0.016 0.013 2 

2007-14 Sheeted dyke 0.084 0.018 0.016 2 

2007-15 Sheeted dyke 0.051 0.017 0.040 2 

229467 Pegmatitic white gneiss 1.105 0.020 - 1 

498033 Augen gneiss 0.527 0.020 - 1 

jeh-SG-07 migmatitic tonalite 0.246 0.018 - 1 

498027 migmatitic tonalite 0.782 0.020 - 1 

498028 migmatitic tonalite 0.382 0.019 - 1 

229403 metadiorite 0.230 0.020 - 1 

496430 non-gneissic tonalite 0.325 0.020 - 1 

SG09 non-gneissic tonalite 0.444 0.016 0.040 2 

499337 non-gneissic tonalite 0.294 0.020 - 1 
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496431 non-gneissic tonalite 0.417 0.022 - 1 

SG10 non-gneissic tonalite 0.453 0.019 - 1 

jeh-SG-01 non-gneissic tonalite 0.878 0.019 - 1 

SG04 non-gneissic tonalite 0.377 0.021 - 1 

SG05 non-gneissic tonalite 0.189 0.018 0.066 2 

JEH-2007-05 non-gneissic tonalite 0.386 0.019 0.047 2 

JEH 10–18 non-gneissic tonalite 0.361 0.017 0.054 2 

JEH 10–19 non-gneissic tonalite 0.419 0.022 - 1 

JEH 10–25 non-gneissic tonalite 0.352 0.019 - 1 

JEH 10–38 non-gneissic tonalite 0.287 0.019 0.027 2 

JEH 10–39 non-gneissic tonalite 0.273 0.020 0.070 2 

 

 

3. Theriak-Domino Thermodynamic Phase Equilibria Modelling 
 
To assess the extent of elemental and Ti isotope fractionation during partial melting of metabasalts and crystallisation 

of tonalitic melts we employ the use of constraints from the latest generation of phase equilibria modelling. The 

modelling uses the Theriak algorithm (de Capitani and Brown, 1987). which is implemented via the Domino software 

(de Capitani and Petrakakis, 2010). The current version of the Domino software used in this study is distributed on 

GitHub and can be accessed using the following link https://github.com/Theriak-Domino/theriak-domino/. The 

complete output from the models including run conditions, the compositions and proportions of phases can be found in 

Table S-6. The procedure for thermodynamic modelling adopted in this study closely follows that of Nagel et al. (2012) 

and Hoffmann et al. (2014). 

 

The references for the databases and solution models for all phases are outlined below: 

 

Database: Holland and Powell (2011) 

 

Solution models: 

Amphibole - Green et al. (2016) 

Melt, ilmenite, rutile, clinopyroxene, orthopyroxene and garnet - Holland et al. (2018) 

Plagioclase - Holland et al. (2022) 

Mica - White et al. (2014) 

 

Set up for Theriak-Domino: Jørgensen et al. (2019) 

 

These data are combined with relevant mineral-melt trace element partition coefficients (Table S-7) and Ti isotope 

fractionation factors (Table S-8). This will quantitatively test if these processes are viable mechanisms to explain the 

range of elemental and 49/47Ti compositions observed in ISB metabasalts and IGC tonalites.  

 

 

 

 

 

https://doi.org/10.7185/geochemlet.2342


 

 

 

   

Geochem. Persp. Let. (2023) 28, 37–42 | https://doi.org/10.7185/geochemlet.2342  SI-6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S-1 Changes in the Titanium (Ti) budget of phases with respect to temperature and remaining melt fraction 

for partial melting of high-Al metabasalt sample 2007-23 at 1 GPa (a); and 1.5 GPa (b) and; low-Al metabasalt sample 

2000-13 at 0.8 GPa (c); 1.3 GPa (d); and 1.6 GPa (e). 
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Figure S-2 Changes in the Titanium (Ti) budget of phases with respect to temperature and remaining melt fraction 

for partial melting of E-MORB (Gale et al., 2013) at 0.8 GPa (a) and 1.3 GPa (b); and a primitive flood basalt (Baffin 

island picrite; Kent et al., 2004) at 0.8 GPa (c) and 1.3 GPa (d); and (e) an average Acasta amphibolite from (Johnson 

et al., 2018). 
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Figure S-3 Changes in the Titanium (Ti) budget of phases with respect to temperature and remaining melt fraction 

for equilibrium (a) and fractional (b) crystallisation of low-Si IGC tonalite sample G 97/31 at 0.5 GPa; and equilibrium 

crystallisation of IGC high-Si tonalite sample JEH 10-38 at 0.5 GPa (c). 
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Phase equilibria modelling is based on three scenarios using different mafic source compositions (see Table S-6, S-9, 

S-10). Firstly, hydrous partial melting of two metabasalts (high and low Al) representative of average compositions of 

local Eoarchean Isua mafic rocks (2007-23 - Hoffmann et al., 2011b; 2000-13 - Polat and Hofmann, 2003), and then 

dehydration partial melting of E-MORB (Gale et al., 2013), a picritic plateau basalt (Kent et al., 2004), and an average 

amphibolite composition from the Acasta Gneiss complex (Johnson et al., 2018). The initial H2O contents used for the 

staring compositions was 4 wt. % and for Isua metabasalts, and 2 wt. % E-MORB and plateau basalt. The whole rock 

geochemistry of the starting compositions be found in Table S-6. Secondly, equilibrium and fractional crystallisation of 

two tonalite compositions (JEH 10-38 - Hoffmann et al., 2011a; G97/31 - Nutman et al., 1999). Amphibole is the 

dominant Ti-bearing mineral phase during partial melting of tholeiitic metabasalts (Fig. S-1, Tables S-6 and S-9), 

whereas depending on pressure, either ilmenite or rutile dominates during partial melting of E-MORB (Fig. S-2). Minor 

amounts Fe-Ti oxides only appear at low melt fraction (<10 %, Tables S-6 and S-9) for tholeiitic metabasalts (Table S-

1 to 6). The distribution of Ti for low pressure (0.8 GPa) melting of a picritic plateau basalt is comparable to that of both 

tholeiitic metabasalts, except for minor amounts of ilmenite below 1000 C, whereas at 1.3 GPa and below 1000 C 

rutile hosts a significant portion of Ti (Figs. S-1, S-2). In stark contrast to the other partial melting models, ilmenite is 

the dominant Ti-bearing phase throughout the 0.1 GPa Acasta amphibolite model (Fig. S-2e, Table S-6, S-9). The 

appearance of amphibole and/or ilmenite causes the fraction of Ti hosted in the melt to sharply decline with decreasing 

melt fraction (Figs. S-1-3). Partial melting of the low-Al metabasalt produces plagioclase-free residues with clino- and 

orthopyroxene as the initially volumetrically dominant phases, until the appearance of amphibole below 1000 C (Fig. 

S-1, Tables S-6 and S-9). Additionally, garnet is stabilised at ∼ 1000 C and 1050 C at 1.3 and 1.6 GPa respectively in 

the low-Al metabasalt (Fig. S-1, Tables S-6, S-9) and at ∼ 1100 C for the high-Al metabasalt at 1.5 GPa (Fig. S-1, 

Table S-6, S-9). In the higher-pressure melting models garnet hosts a significant portion of Ti in the absence of 

amphibole or Fe-Ti oxides (Fig. S-1, S-2). Partial melting of high-Al metabasalt at 1 GPa produces plagioclase and 

notably less clinopyroxene compared to low-Al metabasalt (Fig. S-1, Tables S-6, S-9). Silicate melt is volumetrically 

dominant in the tonalite equilibrium and fractional crystallisation models, followed by plagioclase (Fig. S-3, Tables S-

6, S-10). In the equilibrium models, amphibole, and biotite, along with minor amounts of ilmenite, quartz, and ortho- 

and clinopyroxene appear at lower temperature and melt fraction (Fig. S-3, Table S-6, S-10). In equilibrium 

crystallisation models, amphibole dominates the Ti budget of solid phases until the appearance of ilmenite, with biotite 

also sequestering a significant fraction of Ti at ∼ 695 C (Fig. S-3, Tables S-6, S-10). An abrupt transition occurs 

towards the latter stages of crystallisation (∼ 80%) due to the appearance of biotite (Fig. S-3, Tables S-6, S-10), which 

dominates the Ti budget at low melt fraction (Fig. S-3, Tables S-6, S-10).  The lower modal proportion of amphibole 

and earlier appearance of ilmenite in the fractional crystallisation model results in ilmenite being the dominant Ti-

bearing phase (Fig. S-3, Table S-6, S-10). Clinopyroxene also possess a greater share of the Ti budget in comparison to 

the equilibrium models due to its higher modal abundance (Fig. S-3, Tables S-6, S-10). 

 

4. Trace Element Modelling 
 
For equilibrium partial melting and crystallisation models the trace element and Ti concentrations of the melt were 

calculated using the Equation S-1 (Shaw, 1970): 

 

𝐶𝐿 =
𝐶𝑜

𝐷 + 𝐹(1 − 𝐷)⁄       Eq. S-1 

 

where the trace-element composition of the liquid (CL) depends on the composition of the source (C0), the degree of 

partial melting (F), and the bulk distribution coefficient (D), itself a function of individual mineral partition coefficients 
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and mineral-melt proportions. The degree of melting, the residual mineral assemblage, and the associated mineral 

abundances are all controlled by the intensive and extensive chemical parameters (bulk composition, pressure, 

temperature, fluid pressure, oxygen fugacity etc.). Hence, this equation can be seen as relating CL with (1) the nature of 

the mafic protolith and (2) the thermodynamic conditions of crustal evolution. This concept applies to melting and to 

crystallisation in the same way. 

 

In fractional crystallisation scenarios a Rayleigh fractionation approach was used (Eq. S-2): 

 

𝐶𝐿 = 𝐶𝑜𝐷(1−𝐹)       Eq. S-2 

 

Trace element modelling always carries a certain degree of uncertainty, particularly in the case of TTG formation in 

which both amphibole and garnet are major residual phases (Foley, 2008; Qian and Hermann, 2013). The magnitude of 

D values in the literature for these phases varies greatly as function of pressure, temperature and melt composition, 

which is further compounded by the scarcity of experimental data relevant for tonalitic melts (Barth et al., 2002; Foley, 

2008; Klein et al., 1997, 2000; Qian and Hermann, 2013). An effort was made to select experimentally determined 

mineral melt partition coefficients for tonalitic melts from the available published data at relevant pressure/temperature 

conditions (Barth et al., 2002; Bédard, 2006; Klein et al., 1997; Qian and Hermann, 2013). All mineral-melt partition 

coefficients (Dmin-melt) used for trace element modelling are provided in Table S-7. 

 

5. Modelling of Ti Isotope Fractionation 
 
Equilibrium fractionation 

 

Equilibrium isotope fraction during partial melting and crystallisation is governed by the following mass balance 

Equation S-3: 

 

 

𝑅∗ =  
𝐶𝑚𝑒𝑙𝑡𝐹𝑚𝑒𝑙𝑡𝑅𝑚𝑒𝑙𝑡𝛼𝑚𝑒𝑙𝑡+𝐶𝑎𝑚𝑝𝐹𝑎𝑚𝑝𝑅𝑚𝑒𝑙𝑡𝛼𝑎𝑚𝑝+𝐶𝑐𝑝𝑥𝐹𝑐𝑝𝑥𝑅𝑚𝑒𝑙𝑡𝛼𝑐𝑝𝑥+⋯

𝐶
   Eq. S-3 

 

In which R is an isotope ratio, 49Ti/47Ti in this case (relative to 49Ti/47Ti = 0.749766 for OL-Ti), with a * used to represent 

the bulk composition. C is the concentration of Ti in a phase, F is the proportion of a phase, and  is the isotope 

fractionation factor between a given phase, (i) and the melt as defined by Equation S-4:  

 

𝛼𝑖 =
𝑅𝑖

𝑅𝑚𝑒𝑙𝑡
      Eq. S-4 

 

 

The isotope mass balance equation can be rewritten as follows (Eq. S-5): 

 

𝑅∗ =
𝑅𝑚𝑒𝑙𝑡 ∑ (𝐶𝑖𝐹𝑖𝛼𝑖)𝑖

𝐶∗      Eq. S-5 
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If using mineral-melt partition coefficients the distribution of Ti (𝑋𝑇𝑖−𝑖) for each phase present can be calculated using 

(Eq. S-6): 

 

𝑋𝑇𝑖−𝑖 =
𝐹𝑖∗𝐷𝑖−𝑚𝑒𝑙𝑡

𝑇𝑖

∑ (𝐹∗𝐷)𝑛
     Eq. S-6 

 

Finally, in instances where the bulk isotope composition is known, the isotope composition of the melt can be obtained 

using the Equation S-7: 

 

𝑅𝑚𝑒𝑙𝑡 =
𝑅∗𝐶∗

∑ (𝐶𝑖𝐹𝑖𝛼𝑖)𝑖
      Eq. S-7 

This equation was used to calculate the Ti isotope composition of melts produced during equilibrium melting and 

crystallisation. The isotope composition is reported relative to the Origins Lab Ti standard (Eq. S-8): 

 

𝛿 𝑇𝑖𝑚𝑒𝑙𝑡

49
47⁄

= [
𝑅𝑚𝑒𝑙𝑡

𝑅𝑂𝐿−𝑇𝑖
] − 1    Eq. S-8 

 

Rayleigh fractionation 

 

Ti isotope fractionation during tonalite fractional crystallisation was obtained using a Rayleigh fractionation law. The 

Ti isotope composition of fractionated melts was obtained using the following Equation S-9: 

   

𝑅𝑚𝑒𝑙𝑡 = 𝑅𝑜𝑓𝛼−1      Eq. S-9 

 

where, R is the 49Ti/47Ti isotope ratio, Ro is the initial isotope ratio, f is the fraction of Ti remaining in the melt, and  

is the bulk solid-melt isotope fractionation factor between the remaining melt and the crystallizing mineral assemblage, 

where the mineral-melt fractionation factors are weighted by their Ti concentration at each stage of the model. 

All Ti mineral melt fractionation factors are reported in Table S-8. The references for each of the main Ti-bearing phases 

are outlined below: 

 

Fe-Ti oxides (rutile, ilmenite, magnetite) - Hoare et al. (2022); Rzehak et al. (2022) 

Amphibole, biotite and sphene - Mandl (2019) 

Clinopyroxene - Rzehak et al. (2022) 

Orthopyroxene - Rzehak et al. (2021) 

Garnet - Wang et al. (2020) 

 

The phase proportions and Ti content of each phase are provided by the thermodynamic phase equilibria modelling for 

partial melting of metabasalts and tonalite crystallisation. In the case of partial melting models, the revised value of the 

bulk silicate Earth of +0.05  0.01 ‰ from the recent study of Deng et al. (2023) was used as the initial bulk Ti isotope 

composition, which is indistinguishable from the weighted mean of the Isua metabasalts presented in this study (49/47Ti 

= +0.052  0.006 ‰; 95% c.i; n = 11). For tonalite crystallisation, the Ti isotope composition of JEH 10-38 was used 

(Table S-5). Whereas 49/47Ti composition of tonalite sample G97/31 was estimated via an exponential function of SiO2 

vs 49/47Ti using published data for Archean amphibolites and TTGs (n=48). The exponential function 49/47Ti = 2.3*10-

https://doi.org/10.7185/geochemlet.2342
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4 * e1.04*10-1 (R2 = 0.85) yielded a value of +0.23 ‰ for an SiO2 content of 66.79 wt. % (Tables S-4, S-5, and S-11). This 

value is comparable to other TTG samples of similar SiO2 contents (e.g. G91/61; Zhang et al., 2023, Table S-11). 

 

Supplementary Tables 

 
Tables S-2 to S-11 are available for download (.xls) from the online version of this article at 

https://doi.org/10.7185/geochemlet.2342. 

 
Table S-1 see page SI-2 

 

Table S-2 see page SI-4 

 

Table S-3 see pages SI-4 and SI-5 

 

Table S-4 Whole rock geochemistry and Ti isotope compositions of Isua supracrustal belt metabasalts 

measured in this study. 

 

Table S-5 Whole rock geochemistry and Ti isotope compositions of Itsaq Gneiss Complex samples measured 

in this study. 

 

Table S-6 Results and output of Theriak/Domino phase equilibria modelling. 

 

Table S-7 Mineral-melt partition coefficients and source compositions used for trace element modelling 

during partial melting and crystallisation. 

 

Table S-8 Mineral-melt titanium isotope fractionation factors used for modelling of Ti isotope fractionation 

during partial melting and crystallisation. 

 

Table S-9 Results of trace element and Ti isotope modelling for metabasalt partial melting. 

 

Table S-10 Results of trace element and Ti isotope modelling for tonalite differentiation. 

 

Table S-11 Compilation of literature whole rock geochemical data used in this study. 
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