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We report high precision high field strength element (HFSE) concentrations of Italian
Plio-Quaternary mafic magmas. Silica-undersaturated rocks of the Romanmagmatic
province show high Nb/Ta. Instead, earlier silica-oversaturated rocks of the Tuscan
magmatic province have unfractionated Nb/Ta. We show evidence that the high
Nb/Ta of Roman magmas reflects subduction-derived, carbonate-rich melts.
Similarmeltsmay also account for highNb/Ta in other silica-undersaturatedmagmas
from the circum-Mediterranean (e.g., Macedonia, Bulgaria, Turkey) and the Sunda
arc, previously interpreted to reflect residual rutile. We propose a genetic link
between high Nb/Ta, silica-undersaturated magmas and recycling of carbonate-rich
lithologies via subduction. As such, Nb/Ta can be used to trace the recycling of sub-
ducting carbonates.
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Introduction

The relative concentrations of Nb and Ta remain nearly constant
during most magmatic processes and, thus, variations of Nb/Ta
in volcanic rocks can reveal specific processes. Among geological
environments, the highest Nb/Ta values are observed in carbo-
natites, lithosphere-derived rocks, and subduction related rocks
(e.g., Green, 1995; Münker et al., 2003; Klemme et al., 2005). The
extremely high Nb/Ta of carbonatites can be used to recognise
the involvement of carbonate-rich melts and fluids in different
geological settings (e.g., Green, 1995). For instance, the high
Nb/Ta of some intraplate magmas was shown to derive from
mantle metasomatism by carbonatite-like melts (Bragagni et al.,
2022).

The high Nb/Ta of some arc magmas was attributed to
residual rutile in the subducting slab. However, it remains
ambiguous why only some arc magmas show high Nb/Ta whilst
the occurrence of residual rutile is rather ubiquitous, as sug-
gested by the characteristic HFSE depletions of all subduction
related magmas. Fractionation of Nb/Ta was ascribed to super-
critical fluids (e.g., W. Chen et al., 2018; T.-N. Chen et al., 2022) or
melts (Klemme et al., 2005; Stolz et al., 1996) in equilibrium with
rutile, whereas aqueous fluids are not expected to significantly
influence the bulk Nb/Ta due to their low HFSE abundance
(e.g., Brenan et al., 1994). To evaluate if Nb/Ta could be affected
by carbon-rich fluids/melts released by subducted carbonate
sediments, we investigated volcanic rocks from the Italian pen-
insula and Tyrrhenian seafloor. Here, chemical variations are
well constrained and reflect different lithologies of the subducted

sediments, being silicate-rich in the so called Tuscan magmatic
province and carbonate-rich in the younger Roman magmatic
province (e.g., Conticelli and Peccerillo, 1992; Conticelli et al.,
2015).

Elevated Nb/Ta in Italian Silica-
Undersaturated Magmas

HFSE concentrations measured by isotope dilution and
176Hf/177Hf data were obtained for representative samples of
the Plio-Quaternary Italian volcanism (see Supplementary
Information for analytical methods and the full data set). The
new data from Tuscan and Roman magmatic provinces and
IODP drill cores of the Tyrrhenian Sea (representative of mantle
sources not affected by subduction) were integrated with pub-
lished data from Etna, Stromboli, Vulture, and Pantelleria
(Bragagni et al., 2022).

The high Nb/Ta of Etna and Vulture were previously
explained by mantle-derived carbonatite-like metasomatism in
the subcontinental lithospheric mantle (Bragagni et al., 2022).
The influence of intraplate metasomatism in the subcontinental
lithospheric mantle is attested by the relative deficit of K
expressed as K/K* < 1 (Fig. 1a). Conversely, both Tuscan and
Roman lavas have elevated K/K*, typical of subduction zones,
but with different Nb/Ta (Fig. 1). Tuscan and Tyrrhenian mag-
mas have unfractionated Nb/Ta, similar to the BSE (14 ± 0.3;
Münker et al., 2003), whilst Roman lavas display higher ratios
(up to 24).
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Both Tuscan and Roman lavas have high K content and
K2O/Na2O (Fig. 1b), ranging in composition from shoshonitic
to ultrapotassic (lamproites in the Tuscan and plagioleucitites/
leucitites/kamafugites in the Roman provinces). Their trace
element budget is dominated by a strong subduction signature
(Conticelli and Peccerillo, 1992; Avanzinelli et al., 2009; Conticelli
et al., 2015; Lustrino et al., 2019) as shown also by the very low
Nb/Nb* (Fig. 1c). Previous studies discussed the differences
between magmas from the Tuscan and Roman magmatic prov-
inces, suggesting mantle metasomatism related to subducted
Si-rich metapelites, in the former, and carbonate-rich metape-
lites (marls) in the latter (Avanzinelli et al., 2009; Frezzotti et al.,
2009; Conticelli et al., 2015). This hypothesis is supported by the
contrasting silica saturation, being saturated to oversaturated in
the Tuscan and saturated to strongly undersaturated in the
Roman volcanic rocks (Conticelli and Peccerillo, 1992). Other
evidence for recycling of carbonates in the Roman but not in
the Tuscan magma sources, includes i) 87Sr/86Sr buffered at
a composition typical of carbonate-rich sediments for Roman,
whilst reaching more radiogenic values for Tuscan lavas
(e.g., Avanzinelli et al., 2009), ii) low Ni content and high Ca/Fe
of high-Fo olivine within Roman lavas (Ammannati et al., 2016),
iii) 238U-excess in Vesuvius magmas (Avanzinelli et al., 2018), iv)
similar trace element patterns between Roman lavas and marls
(Grassi et al., 2012), v) melt inclusions in the Roman lavas with
high CaO (up 22 wt. %) and CaO/Al2O3 (Nikogosian and van
Bergen, 2010) and vi) Ca isotopes of Roman leucitites (Ren et al.,
2024).

Subducting carbonate-rich sediments release minor
CO2-rich melts/supercritical fluids (Chen et al., 2023) but in
sufficient amounts to induce CO2-excess and produce silica-
undersaturated magmas upon mantle partial melting (Conticelli

et al., 2015; Gülmez et al., 2023 and references therein). In leucite-
bearing lavas, the degree of silica undersaturation shows
a negative correlation with Nb/Ta (Fig. 1d). The highest Nb/Ta
are recorded in leucitites, which have the strongest subduction
signature (Fig. 1c) and degree of silica undersaturation (Fig. 1d).
Silica-rich supercritical fluids or melts in equilibrium with
residual rutile, which is usually proposed to explain the high
Nb/Ta, are not expected to generate such trends, especially when
compared to the degree of silica undersaturation. Therefore, we
propose that elevated Nb/Ta derive frommelts liberated by sub-
ducting carbonate-rich marls.

Elevated Nb/Ta from Carbonate-Rich
Melts/Fluids in Subduction Zones

Since carbonates are typically HFSE poor, the silicate fraction of
the marls would account for the required HFSE budget, whereas
the carbonate fraction would liberate carbon-rich fluids/melts
required to fractionate Nb/Ta. Recently, Gülmez et al. (2023)
showed that the reaction of carbonate-rich sediments with peri-
dotites at 800–850 °C forms carbonatitic and K-rich silicic melts,
explaining the genesis of ultrapotassic silica-undersaturated
magmas, such as the Roman ones. It is yet difficult to identify
the exact nature of suchmelts/supercritical fluids. This is because
different melts/supercritical liquids interact, mix, and exsolve
as function of the physical conditions of the mantle wedge
(e.g., P–T–fO2) and chromatographic effects in the slab and
within veined peridotite (e.g., Chen et al., 2022). Moreover, the
behaviour of trace elements will also depend on several uncon-
strained parameters describing the melting processes (i.e. degree
of partial melting, mineralogy, partition coefficients) in the slab
and in the metasomatised mantle. Two tentative simple models

Figure 1 Variations of Nb/Ta relative to other geochemical proxies expressing intraplate metasomatism of the lithosphere (K/K*),
subduction affinity (K/K* and Nb/Nb*), K-enrichment (K/K* and K2O/Na2O) and degree of silica saturation (FSSI; Feldspathoid Silica
Saturation Index). The K* and Nb* values are calculated from the geometrical mean of PM-normalised concentrations of Nb-U and
La-U, respectively. “LD” refers to “Latium District”.
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are reported in the Supplementary Information to show that
Roman magmas can be quantitatively explained by melting
of carbonate-rich sediments. Nevertheless, there are several
lines of evidence suggesting that the high Nb/Ta of Roman
magmas derives from carbonate-rich sediments. 1) The Nb/Ta
ratios of the Roman volcanic rocks correlate with proxies for
carbonatite-like components (Fig. 2). 2) Natural melts produced
from silica- and carbonate-rich lithologies, as observed in inclu-
sions in high P–Tmetamorphic rocks, show variable enrichment
in HFSE and K contents (Korsakov and Hermann, 2006).
Interestingly, among these inclusions, the highest HFSE and
K contents are recorded in melts with high Nb/Ta (∼30). 3)
Carbonatite-like melts interpreted to derive from slab melting
of carbonate-rich sediments also show elevated Nb/Ta (Ravna
et al., 2017). 4) Rutile, which likely controls HFSE in the sub-
ducting slab, shows the lowest DNb/DTa (0.35) when in equilib-
rium with a carbonatite melt (Green, 2000).

Comparison with Other Potassic and
Ultrapotassic Rocks in the
Mediterranean Area

Zn-Mg isotope compositions in other circum-Mediterranean
magmas suggests the recycling of marls (Shu et al., 2023). In the
area, high precision HFSE data are available for the Rhodopes
(Bulgaria) and Santorini (Kirchenbaur and Münker, 2015).
Among these, high Nb/Ta (19–20) was only observed in
leucite-bearing absarokites from the Rhodopes. Instead, all
silica-saturated volcanic rocks show lower Nb/Ta (12–16).
Considering also conventional ICP-MS data, among potassic
and ultrapotassic rocks of the circum-Mediterranean, the highest
Nb/Ta was observed in ultrapotassic rocks from Macedonia
(average of 20; Prelević et al., 2008). Even if these rocks were
originally classified as lamproites, they are leucite-bearing
and were later classified as plagioleucitites (Lustrino et al.,

2019), making them comparable to Roman rocks. In the
Mediterranean area, leucitites and plagioleucitites occur also
in the Pontides (Turkey) and the average Nb/Ta is slightly higher
than the BSE (18 in Eastern Pontides; Altherr et al., 2008; 20 in
Central Pontides; Gülmez et al., 2016). Importantly, other silica-
saturated potassic and ultrapotassic rocks from Spain, Serbia and
Turkey, have lower Nb/Ta, analytically indistinguishable from
the BSE value (Prelević et al., 2008). High Nb/Ta in subduction-
related potassic and ultrapotassic circum-Mediterranean rocks
are a peculiar feature of silica-undersaturated rocks, ultimately
reflecting the recycling of carbonate-bearing sedimentary
lithologies.

A Common High Nb/Ta Signature in
Silica-Undersaturated Magmas from
Carbonate-Rich Subduction Zones

We further investigate the relationship between elevated Nb/Ta
and recycled carbonate-rich sediments considering isotope
dilution HFSE data from subduction-related magmas world-
wide. In Figure 3a (Ba/Th vs. 143Nd/144Nd), magmas define two
trends reflecting the contribution of fluids from the subducted
basaltic crust (high Ba/Th) or melts dominated by sediments
(low Ba/Th).

Radiogenic isotope compositions (Sr-Nd-Hf), plotted
against Nb/Ta (Fig. 3b–d), show that fluid dominated arcs
(low 87Sr/86Sr, high 143Nd/144Nd and 176Hf/177Hf) point towards
high Nb/Ta, which was previously interpreted as the effect of
residual rutile in equilibrium with metasomatic fluids, possibly
at the supercritical state (e.g., W. Chen et al., 2018; T.-N. Chen
et al., 2022). Instead, sediment dominated arcs (high 87Sr/86Sr,
low 143Nd/144Nd and 176Hf/177Hf) show either BSE-like Nb/Ta
(Tuscan province, Santorini, Papua New Guinea, Cyprus) or
shifts towards high Nb/Ta (Roman province, Stromboli,

Figure 2 Nb/Ta against other proxies sensitive to carbonate-rich fluids/melts (e.g., carbonatites).
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Bulgaria, Sunda rear-arc). Similar to what is observed in Bulgaria
and in Roman and Tuscan volcanic rocks, at Sunda only silica-
undersaturated samples have elevated Nb/Ta, whilst silica-
saturated samples have BSE-like Nb/Ta. The high Nb/Ta
magmatism of Sunda is only observed in the K-rich rear arc in
the Eastern sector (Stolz et al., 1996; Kirchenbaur et al., 2022).
Importantly, at Sunda, different sediments are subducting, with
a strong carbonate contribution only in the Eastern sector
(House et al., 2019).

In summary, in Italian collisional magmatism as well as in
other melt-dominated arcs worldwide, the high Nb/Ta are asso-
ciated with other evidence of recycling of carbonate-rich lithol-
ogies, such as the degrees of silica saturation. Silica saturation
can also be affected by other factors, like degree and/or depth
of partial melting, but which are not expected to account
for the ubiquitously high Nb/Ta in such lavas. Therefore, in sub-
duction zones affected by sediment melts, the high Nb/Ta of
magmas represent a signature of recycling of carbonate-rich
lithologies. Hence, Nb/Ta represents an important tool to con-
strain the role of subduction of recycled carbonates in the Earth’s
carbon cycle.
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Tyrrhenian Sea Samples Description 
 
Samples from the Tyrrhenian basin were obtained from the MARUM GeoB Core Repository. They were originally 
collected during the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) in expedition 42 and 107. 
The samples were selected to be representative of the depleted magmatism recorded in the Tyrrhenian basin, which is 
thought to form in a back arc setting. In terms of composition they resemble that of transitional MORB and they are 
thought to derive from a depleted mantle slightly re-enriched by subduction-derived fluids (Barberi et al., 1978; 
Beccaluva et al., 1990; Dietrich et al., 1977, 1978; Gasperini et al., 2002; Hamelin et al., 1979). 
 
Analytical Methods 
 
Major element concentrations of the seven samples from the Tyrrhenian basin were obtained using a Philips PW 2400 
XRF at the Universität zu Köln. The trace element content was determined following the procedure of Garbe-Schönberg 
(1993) and using an Agilent 7500cs ICP-MS at the Universität zu Kiel. The same samples were analysed for their Sr-
Nd-Pb isotopic composition at the Università degli Studi di Firenze, leaching the powders in 1 M HCl and following 
the procedure described in Avanzinelli et al. (2005) for dissolution, chemical separation and TIMS measurements. 

Elemental concentrations of HFSE (Nb, Ta, Zr, Hf), Lu, W, Th, and U were obtained along with 176Hf/177Hf 
following the same procedure outlined in Bragagni et al. (2022), which is based on the methods described in Luo et al. 
(1997), Kirchenbaur et al. (2016), Münker et al. (2001), Münker (2010), Weyer et al. (2002), Kleine et al. (2004). 
Briefly, 100 mg of powder was weighted along with isotope tracers enriched in 233–236U–229Th–183W–180Ta–180Hf–176Lu–
94Zr. Samples were dissolved and treated as described in Bragagni et al. (2022). Specifically, the W fraction was 
separated using anion resin exchange chemistry (modified from Kleine et al., 2004), the HFSE were purified in three 
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steps of resin exchange chemistry (LN-spec, anion, LN-spec) using a modified procedure originally developed by 
Münker et al. (2001), U and Th were separated with TRU-spec chemistry (Luo et al., 1997). All measurements were 
performed at Universität zu Köln with a Thermo-Scientific Neptune MC-ICP-MS equipped with a Cetac Aridus II. 
Blanks were 36–54 pg for W, 38–163 pg for Ta, 0.7–1.4 ng for Zr, 28–57 pg for Nb, 43–123 pg for Hf, 9 pg for Th and 
35 pg for U, and are all negligible with respect to the amounts of sample processed. 
 
Quantifying the Role of Carbonate-rich Melts in Roman Magmatic Province 
 
Quantifying the effect of silicate and carbonatitic melts in the investigated samples is not straightforward. This is due to 
the complexity of the involved processes and because melting parameters, such as partition coefficients, are not readily 
available. Green (2000) provides Kd for HFSE in rutile in equilibrium with carbonatitic magmas. However, in the case 
of marls, a silicate melt will also form along the carbonatite melt (e.g., Gülmez et al., 2023; Skora et al., 2015). Therefore, 
to quantitatively model HFSE and other trace elements, both silicate and carbonatite partition coefficients must be 
considered. In the literature there are few experimental works reporting the trace element composition of melts in 
equilibrium with sediments at pressure and temperature relevant for mantle wedge conditions (Herman and Rubatto, 
2009; Skora and Blundy, 2010; Skora et al., 2015; Gülmez et al., 2023). Among them, Skora et al. (2015) and Gülmez 
et al. (2023) investigated carbonate-rich lithologies but they do not report partition coefficients. The only experimental 
work with partition coefficients for sediments melt is Skora and Blundy (2010), which used a radiolarian clay lithology. 
These partition coefficients can be used to model melting of silicic sediments as those expected to influence the Tuscan 
magmatic province. Although not ideal, the same partition coefficient can be employed to reproduce the composition of 
a silicic melt in equilibrium with a marl, as needed to explain the Roman magmatism. As such, we assume that HFSE 
are controlled by rutile in equilibrium with a carbonatitic melt (partition coefficients of Green, 2000), whereas other 
elements are controlled by silicates in equilibrium with the silicic melt (partition coefficients of Skora and Blundy, 2010). 
It should be stressed that this is a simplification because also other elements can be influenced by carbonatite melts 
(especially REE). Moreover, also the partitioning of HFSE between rutile (and possibly other phases) and the silicate 
melt is not considered. 

An alternative proxy of the metasomatic melt affecting the mantle wedge under the Roman magmatic province 
is represented by the carbonate-rich inclusions observed by Korsakov and Herman (2006) in orogenic massif. Therefore, 
we model the effect of adding three different melts to a DMM, two inferred from melting silica- and carbonate-rich 
sediments, and one simply using the composition of a carbonate-rich inclusions of Korsakov and Herman (2006). 
Modelling was performed only with Nb/Ta and radiogenic isotope ratios to avoid variations of concentrations due to 
partial melting in the metasomatised mantle wedge. As shown in Figure S-1, mixing the DMM with silicic melt can 
reproduce the signature of the Tuscan magmatic province in Nb/Ta vs. Sr or Nd isotopes. The Roman magmas lie below 
the two mixing lines obtained for carbonate-rich metasomatic melts. This is readily explained by the concurrent 
occurrence of carbonate-rich metasomatic melts along with silicic melts (i.e. with canonical Nb/Ta) or fluids (i.e. 
negligible HFSE content but significant Sr and Nd). 
 
 
References for Literature Data in Figures 2 and 3 
 
Reference values for PM values are taken from Münker et al. (2003) and Palme and O’Neill (2014). Literature isotope 
dilution data and Sr-Nd-Hf isotopes reported in Figure 3 are from: Tonga (Beier et al., 2017), Cyprus (König et al., 
2008), Solomon (König et al., 2008; Schuth et al., 2009), Papua New Guinea (PNG) (König et al., 2010), Kamchatka 
and Aleutian arc (Churikova et al., 2001; Münker et al., 2004; Yogodzinski et al., 1995), Santorini and Bulgaria 
(Kirchenbaur et al., 2012; Kirchenbaur and Münker, 2015), Sunda (Kirchenbaur et al., 2022), Stromboli (Bragagni et 
al., 2022). 
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Supplementary Table 
 
Table S-1 Compiled dataset with HFSE concentrations measured by isotope dilution (this work and Bragagni et al., 
2022) along with major-trace elements and Hf-Sr-Nd-Pb isotope data (this work and indicated literature). 
 
Table S-1 is available for download (.xlsx) from the online version of this article at 
https://doi.org/10.7185/geochemlet.2410. 
 
 
 
 
Supplementary Figure 
 

Figure S-1 Mixing models to reproduce the Nb/Ta signature of the Roman and Tuscan magmatic provinces. The 
blue symbols represent a mixing curve between the DMM and the carbonate-rich melt (inclusion G0 Ttn-Ep) reported 
by Korsakov and Herman (2006) and assuming Sr and Nd isotope composition from marl SD53 (Casalini et al., 2019). 
The brown and green crosses display a mixing between the DMM and melts from a carbonate-rich marl (SD53 of 
Conticelli, 1998; Conticelli et al., 2015; Casalini et al., 2019) or a carbonate poor lithology (SD75 of Conticelli, 1998; 
Conticelli et al., 2015; Casalini et al., 2019), respectively. For the marl melting, we assume that HFSE are controlled 
only by rutile, using the partition coefficients of Green (2020) for a carbonatitic melt and imposing a 1 % modal fraction 
of rutile. Partition coefficients for Sr and Nd are from Skora and Blundy (2010) (900 °C). We assume an arbitrary 50 % 
of partial melting of the marl. Such a melt was then mixed at variable proportions with the DMM. For melting the 
carbonate-poor lithology, we only used the partition coefficients of Skora and Blundy (2010) (900 °C) and assume a 
melting degree of 50 % before mixing it with the DMM. Symbols for the mixing models are reported adding 0, 0.5, 1, 
2, 5, 10, 20, 50 % of sediment melt to the DMM. In a possible scenario, the Roman magmas are explained by the double 
contribution of melts from carbonate-rich (i.e. marl melting or G0 Ttn-Ep melt) and carbonate-poor lithologies (to lesser 
extent). Instead, the Tuscan magmas are explained by melting only the carbonate-poor lithology. DMM values are taken 
from Workman and Hart (2005). 
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