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Sample Description 

 

The mid-ocean ridge basalts studied here were sampled during the PACANTARCTIC2 cruise (2004-2005) 

along the Pacific Antarctic Ridge (PAR) between 53°S and 41°S (Fig. S-1). The goal of the PACANTARTIC2 

cruise was to sample the ridge furthest away possible from any hotspot, in order to study the composition of 

the depleted upper mantle. The morphology (median values of the ridge axis bathymetry and ridge cross-

section) of the ridge sampled during the PACANTARCTIC2 is consistent with a normal fast spreading ridge 

(e.g., Briais et al., 2009), which differs from a hotspot-ridge interaction setting. The closest hotspot-ridge 

interaction from the studied PAR area is the Foundation hotspot ~800 km north, and the 2nd closest is the 

Louisville hotspot ~1200 km south. The PAR is a fast-spreading context where along axis fluxes are limited, 

and thus hotspot contributions are negligible over such long distances. The lack of hotspot influence in the 

samples studied is further supported by geochemical studies (e.g., Moreira et al., 2008; Hamelin et al., 2010, 

2011; Labidi et al., 2014; Bezard et al., 2016). Trace element ratios, such as (La/Sm)N are within the domain 

of ‘normal MORB’ (Hamelin et al., 2010). Geochemical compositions in Sr-Nd-Pb-Hf of these samples can 

be found in Hamelin et al. (2011) and plot close to the DMM end member. The range of radiogenic 

compositions in that study are attributed to the partial melting of a « marble-cake » mantle assemblage, 

unrelated to plume-ridge interactions. Additionally, helium isotopes of the Pacific-Antarctic Ridge between 

41.5 and 52.5° S show a lack of hotspot influence along that section of the ridge (Moreira et al., 2008).  

 

Tungsten concentrations in the PAR MORBs studied here (n = 18) vary from 6.8 ng g-1 to 220 ng g-1 (Data 

Table S-1). The W concentrations are strongly coupled to other immobile and incompatible trace elements 

such as Nb and Th, and W/Th ratios are within the range of fresh MORB (Fig. S-2). This implies that W 

contained in the MORB samples studied is derived from their mantle sources (e.g., König et al., 2011) and 

free from secondary W overprinting.  
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Figure S-1 Map of the Pacific-Antarctic Ridge. Black dots are dredged samples during the PACANTARCTIC2 

cruise. Grey lines are overlapping spreading centres (OSC) bordering second order segmentation of the ridge axis. 
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Figure S-2 Tungsten vs. other highly incompatible trace element concentrations and the normalized La/Gd ratio of 

the Pacific-Atlantic ridge basalts. Tungsten concentrations from this study, other trace element concentrations from 

Hamelin et al. (2010), Labidi et al. (2014) and Yierpan et al. (2019). Fresh MORB W/Th ranges from König et al. 

(2011), altered oceanic crust W/Th ranges from Reifenröther et al. (2021). 

 

Methods 

 

Tungsten concentration analysis 

 

Tungsten concentrations (Data Table S-1) were determined by isotope dilution using a 186W spike. 

Approximately 0.1 g of sample powder was dissolved in a mixture of 4 mL 29 M HF and 1 mL 15 M HNO3, 
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followed by repeated dissolutions in 1 mL 6N HCl. Samples were spiked at the onset of digestion to insure 

sample-spike equilibration. Tungsten was isolated using ion chromatography techniques similar to the ones 

described in Nagai and Yokoyama (2014). Isotope ratio measurements were carried out on a ThermoScientific 

Neptune MC-ICPMS of the Isotope Geochemistry and Geochronology Research Centre (IGGRC) of Carleton 

University (Ottawa, Canada). Measurements were performed on 1.5 ppb W 0.5 M HNO3 + 0.05 HF solutions. 

Two standard deviation measurement precisions are largely 2-4 %, propagated 2 standard deviations are 

estimated better than 10 % in most cases (largely by uncertainty of the spike concentration). Monitoring the 

measurement accuracy of isotope dilution concentration analysis with the USGS basalt standards BHVO-2 

and BCR-2 yielded 193 ± 18 ng g-1 and 436 ± 47 ng g-1, respectively, which are similar within errors of 

previously reported concentrations (e.g., Jochum et al., 2016; Kurzweil et al., 2018). Total chemistry blanks 

were 260 pg, representing 1-2 % of the W analysed in samples. 
 

Tungsten isotope analysis 
 

High precision W isotope compositions (Data Table S-2) were also obtained at the IGGRC of Carleton 

University. Sample masses between 3.4 g and 24.5 g were dissolved and W was separated following similar 

methods described in Touboul and Walker (2012) and Breton and Quitté (2014). Tungsten separation for 

isotope analysis was performed using a first 20 mL AG50W-X8 resin (200-400 mesh) column to remove 

matrix elements, and a second 10 mL AG1-X8 resin (200–400 mesh) column to separate W from other high 

field strength elements (HFSE). Purified W solutions were passed through an additional AG1-X8 resin (200–

400 mesh) micro-column (0.3 mL) mainly to remove Ti traces that could reduce the ionization efficiency of 

W. Tungsten yields were 50-70 %, procedural blanks ranged between 0.4 to 3.0 ng, respectively, for ~ 440 to 

530 ng of W separates representing less than 1 % of the total W.  

 

Tungsten isotope ratios were measured on a ThermoScientific Triton TIMS, using the setup and protocols 

described in Archer et al. (2017) and Rizo et al. (2019). Results were interference-corrected using the oxygen 

isotope compositional relations from Archer et al. (2017) and mass bias-corrected by internal normalisation 

to 186W/184W = 0.92767 (Völkening et al., 1991) (normalisation to 186W/183W = 1.985936 was also performed 

and results shown in Data Table S-2). The 182W/184W and 183W/184W ratios are reported as µ notations, which 

are deviations in parts per million (ppm) from the isotope composition of the Alfa Aesar W standard. This 

standard yielded 182W/184W = 0.864888 ± 0.000003 (2 s.d.; n = 6), and 183W/184W = 0.467149 ± 0.000001 (2 

s.d.; n = 7).  Two additional measurements of the NIST standard 3163 yielded mean µ182W = 2.4 ± 6.0 (2 s.d.) 

and µ183W = -1.4 ± 2.9 (2 s.d.). No residual mass-dependent fractionation is observed in the dataset (Fig. S-

3). The µ182W errors of means are ± 2 standard deviations (2 s.d.) of the sample populations, or 2 standard 

errors (2 s.e.) of the individual measurements. 
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Figure S-3 µ183W vs µ182W of the MORB samples of this study, as well as of the Alfa Aesar W standard and the W 

isotope standard reference material 3163 from the National the Institute of Standards and Technology (NIST).  Both 

µ183W vs µ182W shown are mass bias-corrected using 186W/184W. 

 

Neodymium isotope analysis 
 

Fourteen MORB samples have been analysed for high-precision Nd isotopic compositions (Data Table S-3). 

Chemical separation and purification of Nd were performed at the Advanced Research Complex of University 

of Ottawa, Canada, following the protocols of Garçon et al. (2018) and Li et al. (2015), and only the main 

steps are summarized here. The light-REE were separated from the whole-rock matrix using 200-400 mesh 

AG50W-X8 cation-exchange resin. The dried light-REE fractions were dissolved in HNO3 with NaBrO3 to 

oxidize Ce to its +4 form and remove it from other light-REE+3 using columns filled with 100-150 µm 

Eichrom LnSpec resin. The Na and Br added during the Ce-removal procedure were then removed using 

AG50W-X8 cation-exchange resin. The Nd was finally purified from Sm and any remaining Ce using thin 

columns filled with 20-50 µm Eichrom LnSpec resin. Total chemistry Nd yields were ≥ 90 %, the total 

procedural Nd blank was 16 pg.  

 

High-precision Nd isotope abundance ratio measurements were performed on a ThermoScientific Triton 

TIMS at the Isotope Geochemistry and Geochronology Research Centre of Carleton University (Ottawa, 

Canada). Samples were loaded onto zone-refined 99.999 % Re filaments and Nd isotopes were measured on 

double filaments and using a 2-step dynamic routine that provided static measurements of all Nd abundance 

isotope ratios and dynamic measurements of the 142Nd/144Nd ratio. The mass/charge ratios 140+ and 147+ were 

monitored for Ce and Sm mass interference corrections. Each run consisted of 600 to 1200 ratios measured in 

blocks of 25 cycles, with an integration time of 8.39 seconds per step and a background measurement of 30s 

between each block. Data were corrected for instrumental mass fractionation using the exponential law to 
146Nd/144Nd = 0.7219. Samples were measured at the same time as the JNdi-1 Nd standard, and in two 
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analytical sessions (Session 1 and Session 2; Data Table S-3).  For Session 1, repeated measurement of the 

JNdi-1 standard yielded an average 142Nd/144Nd = 1.141835 ± 0.000004 (2 s.d., n = 14), corresponding to a 

repeatability of 3.8 ppm. For Session 2, the JNdi-1 yielded an average 142Nd/144Nd = 1.141836 ± 0.000004 (2 

s.d., n = 6), corresponding to a repeatability of 3.3 ppm. The average 143Nd/144Nd ratio for the JNdi-1 standard 

for both sessions was 0.512107 ± 0.000003 (2 s.d.), and within error of the value of Tanaka et al. (2000) of 

0.512115 ± 0.000007. The µ142Nd errors of means are ± 2 standards deviations (2 s.d.) of the sample 

populations or 2 standard errors (2 s.e.) of the individual measurements. 

 

The µ142Nd obtained for the PAR MORB samples do not correlate with their µ182W (Fig. S-4). 

 

A database for all available µ142Nd for MORB, OIB and mantle peridotites is provided in the Data Table S-

4. 

 

 

 

Figure S-4 µ182W vs. µ142Nd of the PAR MORB samples of this study. Errors shown are ± 2 s.e. Square symbol for 

sample PAC2DR27-1 (T-MORB).  
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Supplementary Information Data Tables 

Data Tables S-1 to S-4 (Excel) can be downloaded from the online version of this article at 

https://doi.org/10.7185/geochemlet.2412. 

 

Data Table S-1   Tungsten abundances for the PAR MORB samples of this study, and the USGS rock 

reference materials BHVO-2 and BCR-2. 

 

Data Table S-2   Detailed high-precision W isotope measurements for the PAR MORB samples of this study. 

Tungsten isotope ratios normalised to 186W/184W (spreadsheet 1), or 186W/183W (spreadsheet 2). 

 

Data Table S-3   Detailed high-precision Nd isotope measurements for the PAR MORB samples of this study. 

 

Data Table S-4   Compilation of published µ142Nd and µ182W for MORB, OIB and mantle peridotites. 
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