Medieval and recent SO2 budgets in the Reykjanes Peninsula: implication for future hazard

A. Caracciolo1*, E. Bali1, E. Ranta2, S.A. Halldórsson1, G.H. Guðfinnsson1, B.V. Óskarsson3

Abstract

Exposure to volcanic SO2 can have adverse effects on human health, with severe respiratory disorders documented on short- and long-term timescales. Here, we use melt inclusion and groundmass glass data to calculate potential syneruptive SO2 emissions during medieval and recent (2021–2024) eruptions across the Reykjanes Peninsula, the most populated area of Iceland, which has recently undergone magmatic reactivation with the 2021–2024 eruptions at Fagradalsfjall and Svartsengi. We target 16 individual eruptions from the medieval volcanic cycle at the Reykjanes Peninsula, the 800–1240 AD Fires, along with the 2021–2023 Fagradalsfjall eruptions and the 2023–2024 eruptions at Sundhúskógur. We calculate potential SO2 emissions across the RP for the individual eruptions to be in the range of 0.004–6.3 Mt. These estimates correspond to mean daily SO2 emissions in the range of 1000–111,000 t/day, higher than the mean SO2 measurements of 5240 ± 2700 t/day during the 2021 Fagradalsfjall eruption. By using pre-eruptive sulfur values preserved in undegassed melt inclusions, we develop an empirical approach to calculate best- and worst-case potential SO2 emission scenarios of any past or ongoing Reykjanes Peninsula eruption of known effusion rate. We conclude that the potential sulfur emissions across the RP can be significantly higher than observed during the 2021 Fagradalsfjall eruption, mainly because of the more evolved nature and higher sulfur contents of magmas erupted during the medieval period. Based on dominant NW wind directions on the Reykjanes Peninsula, eruptions in Brennisteinsfjöll pose the greatest health hazard to the capital area. Sulfate aerosol produced during long-term eruptions may impact visibility and air quality in the Keflavík Airport area. Our findings enable assessment of SO2 emission scenarios of future eruptions across the RP and can be used together with gas dispersal models to forecast SO2 pollution at ground level, and its impact on human health.

Introduction

The release of volcanic gases and aerosols during volcanic eruptions can significantly impact the air quality and climate (e.g., Ilyinskaya et al., 2017), as well as biodiversity (e.g., Weisert et al., 2022). Among volcanic gases, sulfur species (SO2, H2S) and associated aerosols (SO4, H2SO4) are the most critical airborne hazards to human health, with short- and long-term impacts that have been recorded at variable distances from eruptive vents (e.g., Schmidt et al., 2015; Ilyinskaya et al., 2017; Stewart et al., 2022; Horwell et al., 2023). For example, several studies have associated cardiorespiratory issues with volcanic sulfur emissions (e.g., Carlsen et al., 2021, and references therein). Hence, a detailed knowledge of potential sulfur releases of active volcanoes located in densely populated areas is critical to understand air quality hazards of future volcanic eruptions. This is the case of the Reykjanes Peninsula (RP) in southwest Iceland, an active spreading area segmented into five volcanic systems, which from west to east are Reykjanes, Svartsengi, Fagradalsfjall, Krysuvik and Brennisteinsfjoll. The latest magmatic period in the RP occurred ∼800 years ago (Sæmundsson et al., 2020), but knowledge about sulfur outputs during those eruptions has been lacking thus far. Each volcanic system on the RP tends to activate during individual magmatic periods (Sæmundsson et al., 2020), and the recent 2021–2024 Fagradalsfjall and Svartsengi eruptions (Barsotti et al., 2023; Sigmundsson et al., 2024) suggest the potential initiation of a new eruptive period in an area that hosts ∼70 % of the Icelandic population. Consequently, there is an increased societal need for a deeper understanding of sulfur emissions across the RP, which is crucial for a comprehensive assessment of sulfur’s impact during future eruptions and its potential consequences for human health.

Here, we focus on magmatic units erupted in the volcanic systems of Reykjanes, Svartsengi, Krysuvik and Brennisteinsfjoll in the RP during the last medieval eruptive cycle, which occurred between the 8th century and 1240 AD, hereafter referred to as the 800–1240 AD Fires (Peate et al., 2004; Caracciolo et al., 2023). Additionally, we target the 2021–2023 Fagradalsfjall eruptions and the December 2023, January 2024 and February 2024 eruptions at Sundhúskógur in Svartsengi. We calculate syneruptive sulfur release and potential sulfur emissions of 19 geochemically and petrochemically well characterised magmatic units erupted during medieval and recent (2021–2024) eruptions across the Reykjanes Peninsula, the 800–1240 AD Fires, along with the 2021–2023 Fagradalsfjall and Svartsengi eruptions.
units (Peate et al., 2009; Caracciolo et al., 2023) and compare those with sulfur emissions from the 2021 Fagradalsfjall eruption (Hallíðórsson et al., 2022; Barsotti et al., 2023). Also, we estimate daily SO$_2$ emissions and develop an empirical approach to calculate worst- and best-case potential sulfur emissions for any eruption of a given volume emplaced in the RP.

Samples and Methods

Scoria samples were collected from multiple vents within individual eruptive units of the 800–1240 AD Fires (Table S-1) (Caracciolo et al., 2023). Here, we present new sulfur (S) data for the same groundmass glass ($n = 889$) and melt inclusions (MIs) ($n = 416$) dataset published in Caracciolo et al. (2023). Additionally, we include new MI and groundmass glass data from quenched lavas and tephra erupted during the 2022 and 2023 Fagradalsfjall eruptions, as well as data from the eruptions at Sundhúskógur that occurred in the Svartsengi volcanic system in December 2023, January 2024 and February 2024. S was analysed by electron microprobe analyser (EMPA) at the University of Iceland, using the same analytical settings as in Caracciolo et al. (2020), and MI compositions have been corrected for post-entrainment processes (PEP) (Tables S-2–S-4) (Caracciolo et al., 2023).

Here, we use the ‘petrological method’ (Dewine et al., 1984) to calculate eruptive sulfur emissions based on the difference between S concentrations in mineral-hosted MIs and S concentrations measured in groundmass glass (ΔCS). The idea behind this reconstruction method is that melt inclusions with similar compositions to erupted melts preserve the pre-eruptive volatile content, and quenched groundmass glasses provide an estimate of the post-eruptive volatile content. For the different magmatic units, the highest S concentration measured in PEP-corrected MIs ($C_{S\ MI}$) is selected as the pre-eruptive S concentration, whereas the lowest S concentration in groundmass glasses ($C_{S\ glass}$) is chosen as the post-eruptive S concentration. By combining the mass of erupted magmas with the mass of S released, we can assess vent syneruptive SO$_2$ emissions (M_{SO_2}) of individual eruptions (see Eqs. S-1, S-2) (e.g., Bali et al., 2018, and references therein). Furthermore, we calculate the magnitude of potential SO$_2$ emissions (potential M_{SO_2}), which refers to complete degassing of all pre-eruptive sulfur ($C_{S\ glass}$) = 0 and reflects the maximum amount of SO$_2$ that a specific eruption could potentially have released, assuming that there is no degassing of unerupted magma. This reconstruction method has been shown to have matched field-based volatile measurements exceptionally well during the 2014–2015 Holuhraun eruption (Bali et al., 2018; Pfeffer et al., 2018) and the 2021 Fagradalsfjall eruption (this work, Table 1).

Sulfur Concentrations in MIs and Groundmass Glass

Sulfur concentration in MIs is in the range of 200–1900 ppm, with a relatively large variability of S at a given MI Mg#. Particularly, the most primitive MIs (Mg# > 65), exclusively preserved in Reykjanes and Krysuvik, record S contents in the range of 580–1070 ppm (Fig. 1). S concentration in PEP-corrected MI compositions increases with decreasing MI Mg#, as expected for melt compositions controlled by fractional crystallisation. MI compositions from the 2023–2024 eruptions at Sundhúskógur record pre-eruptive S concentrations in the range of 1400–1600 ppm, in agreement with MI data from the medieval eruptions (Fig. 1b). MI compositions from the 2022–2023 Fagradalsfjall eruptions closely match S concentrations measured in the 2021 products (Fig. 1c). Groundmass glasses from Brennisteinsfjöll have mean S contents in the range of 150–280 ppm, lower than mean S contents measured in glasses from the other volcanic systems (280–450 ppm) (Fig. 1, Table 1). For comparison, MI compositions from the 2021 Fagradalsfjall eruption contain maximum S concentrations of 1200 ppm, whereas the groundmass glasses contain 20–200 ppm S. Sulfide globules were not observed in the erupted samples.

Assessing Sulfur Variability and Degassing during the 800–1240 AD Fires

Considering that medieval and recent eruptions on the RP are likely sourced from mantle-derived melts of diverse compositions (Peate et al., 2009; Hallíðórsson et al., 2022; Harðardóttir et al., 2022; Caracciolo et al., 2023), including melts with variable S contents (Ranta et al., 2022), we use our MI record to estimate S contents of the local enriched and depleted end member melt components. We distinguish between these components from the K$_2$O/TiO$_2$ variability, a robust tracer of mantle heterogeneities in Iceland (Hallíðórsson et al., 2022; Harðardóttir et al., 2022) (see Supplementary Information). Our modelling, considering that S behaves as an incompatible element in basaltic magmas, shows that most of the MI S variability can be explained by fractional crystallisation (FC) and mixing of, at least, two end member melt compositions (Fig. 1a–d).

In order to evaluate S saturation during magma ascent and fractional crystallisation through the crust, we calculate sulfur content at sulfide saturation (SCSS) along a FC path, which reflects the amount of S$^{+}_2$ present in a melt in equilibrium with a sulfide phase (Smythe et al., 2017) (see Supplementary Information). Our modelling suggests that melts are sulfide undersaturated during most of magmatic fractionation across the RP (Figs. 1, S-3, S-4). Only magmas from Svartsengi and Brennisteinsfjöll have a high likelihood to be sulfide saturated prior to eruptions. Furthermore, sulfide saturation is reached earlier during magmatic differentiation of enriched mantle-derived melts than depleted melts (Fig. 1).

Modelling of S degassing with SulfurX (Ding et al., 2023) suggests that the basaltic melts that erupted during the 800–1240 AD Reykjanes Fires are unlikely to degas significant amounts of S at known pre-eruptive magma storage depths (Caracciolo et al., 2023) and that significant S degassing only takes place during magma ascent in the last 0.2 kbar (<700 m) (Fig. S-1).

Sulfur Emissions across the RP

Sulfur release ranges between 1000 and 1770 ppm across the RP, a typical range for Icelandic rift basalts (Ranta et al., 2024), with the largest ΔC_S found in lavas from Svartsengi and Brennisteinsfjöll (Table 1). ΔC_S values can be scaled by the mass of erupted material to estimate M_S of individual eruptions, using published volumes of individual eruptive units, in the range of 0.01 km3 to 0.72 km3 (Table 1). Using a melt density of 2700 kg/m3 and assuming a bulk vesicularity of 15 vol. %, we calculate M_S between 0.03 and 5.9 Mt (Fig. 2a). The most voluminous lavas found in Svartsengi and Brennisteinsfjöll released the highest mass of SO$_2$ into the atmosphere during the medieval period. The syneruptive SO$_2$ released by these latter voluminous lavas is approximately 2 to 6 times larger than syneruptive SO$_2$ emissions during the 2021 Fagradalsfjall eruption, for which we estimated $M_S = 0.78$ Mt (M_{SO_2} measured = 0.97 ± 0.5; Barsotti et al., 2023). These are roughly between 20 and 70 % of the syneruptive SO$_2$ emissions estimated for the 2014–2015 Holuhraun eruption ($M_S = 10.5$ Mt; Bali et al., 2018). We calculate SO$_2$ release of
Table 1: Eruptive units studied in this work and summary of main results.

<table>
<thead>
<tr>
<th>No.</th>
<th>Eruptive unit</th>
<th>Acronym</th>
<th>Volcanic system</th>
<th>Age</th>
<th>C_S_Mg</th>
<th>C_S_glass</th>
<th>ΔC_S</th>
<th>V</th>
<th>V_DRE</th>
<th>M_S</th>
<th>Potential M_S</th>
<th>MOR^b</th>
<th>Time of lava emplacement</th>
<th>Daily SO2 emissions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stampahraun 4</td>
<td>SO</td>
<td>Reykjanes</td>
<td>1210–1240</td>
<td>1559</td>
<td>258</td>
<td>1275</td>
<td>0.10</td>
<td>0.09</td>
<td>2.3E+11</td>
<td>0.58</td>
<td>0.71</td>
<td>6.4–67.9 (17.9)</td>
<td>17–193 (65)</td>
<td>3570–40,450 (10,620)</td>
</tr>
<tr>
<td>2</td>
<td>Amarsteusunraun</td>
<td>SÖ-A</td>
<td>Svartsengi</td>
<td>1210–1240</td>
<td>1907</td>
<td>196</td>
<td>1667</td>
<td>0.55</td>
<td>0.47</td>
<td>1.3E+12</td>
<td>4.23</td>
<td>4.81</td>
<td>26.1–60.1 (31.5)</td>
<td>106–244 (190)</td>
<td>20,420–47,000 (26,200)</td>
</tr>
<tr>
<td>3</td>
<td>Ekkvarahraun</td>
<td>SO-E</td>
<td>Svartsengi</td>
<td>1210–1240</td>
<td>1907</td>
<td>112</td>
<td>1759</td>
<td>0.28</td>
<td>0.24</td>
<td>6.4E+11</td>
<td>2.26</td>
<td>2.45</td>
<td>26–93.7 (33.3)</td>
<td>35–125 (97)</td>
<td>21,340–76,900 (27,300)</td>
</tr>
<tr>
<td>4</td>
<td>Illahraun</td>
<td>SO-I</td>
<td>Svartsengi</td>
<td>1210–1240</td>
<td>1907</td>
<td>312</td>
<td>1563</td>
<td>0.05</td>
<td>0.04</td>
<td>1.1E+11</td>
<td>0.36</td>
<td>0.44</td>
<td>4–42.7 (11.2)</td>
<td>14–145 (52)</td>
<td>2920–31,140 (8180)</td>
</tr>
<tr>
<td>5</td>
<td>Sundhnúkar Dec. 2023</td>
<td>Sund</td>
<td>Svartsengi</td>
<td>2023</td>
<td>1610</td>
<td>210</td>
<td>1372</td>
<td>0.01^d</td>
<td>0.01</td>
<td>2.5E+10</td>
<td>0.07</td>
<td>0.08</td>
<td>50^d</td>
<td>5</td>
<td>32,000</td>
</tr>
</tbody>
</table>

* Lava volumes estimated by assuming a thickness of 5 m, consistent with average thicknesses of lava flows of known volumes with a similar aerial extent.

^a MOR values (within brackets) and uncertainty ranges for the medieval eruptions are from Öskarsson et al. (2024).

^b MOR values from Pedersen et al. (2022).

^c V and MOR from Pedersen et al. (2024).

^d Lava volumes at the vent are not available at the current stage.
0.06–0.07 Mt for the 2022 and 2023 Fagradalsfjall eruptions, respectively. However, for a given mass of melt, the 2021–2023 Fagradalsfjall eruptions released a comparable mass of SO$_2$ (Table 1). Conversely, the 2023–2024 eruptions at Sundhnúksgígar slightly exceeded SO$_2$ emissions during the 2021–2023 Fagradalsfjall eruptions (Table 1). Similarly, we have calculated potential M_S, the maximum mass of SO$_2$ that could potentially have been released during each eruption. Potential M_S across the RP ranges between 0.003 and 6.3 Mt and is only slightly higher than vent M_S as most of the S is released into the atmosphere during eruptions rather than staying dissolved in the lava (Table 1).

Figure 1 Variations of S contents in groundmass glasses (filled circles) and PEP-corrected MIs (filled triangles) as a function of Mg# ($\text{Mg}^\# = 100 \cdot \text{Mg}/(\text{Mg} + \text{Fe}^{2+})$, $\text{Fe}^{2+}/\text{Fe}_{\text{tot}} = 0.9$) in samples from (a,b,d,e) the 800–1240 AD Fires, (c) the 2021–2023 Fagradalsfjall eruptions and (b) the 2023–2024 eruptions at Sundhnúksgígar. Data from the 2021 Fagradalsfjall eruption are from Halldórsson et al. (2022). Red and blue solid lines indicate fractional crystallisation paths calculated for geochemically enriched and depleted initial melt compositions, respectively (see Supplementary Information). The black dotted curve indicates SSS along an empirical fractional crystallisation path calculated after Smythe et al. (2017), implemented in PySulfSat (Wieser and Gleeson, 2022).
Evaluating End Member Scenarios of SO₂ Emissions and Hazard Potential for Future Eruptions across the RP

Based on the MI record of the 2021–2023 Fagradalsfjall eruptions (Halldórsson et al., 2022; this work), the 2023–2024 eruptions at Sundhnúkur (HRV), we constrain potential maximum (1900 ppm) and minimum (1170 ppm) pre-eruptive S concentrations and use these to estimate potential Mₛ of future eruptions in the RP. With these constraints, we developed an empirical approach to assess potential Mₛ for a given eruption of known lava volume, with important applications for forecasting the worst- and best-case scenarios of potential Mₛ of future eruptive events (Fig. 2b). For example, based on our approach, an eruption with an eruptive volume of 0.4 km³ could release between 2.9 Mt and 4.1 Mt SO₂. This method also has an application when it comes to evaluating the long-term SO₂ impact of ongoing eruptions in the RP. If the mean magma output rate (MOR) is known and fixed, one can roughly estimate the volume of the lava flow and calculate potential Mₛ at any given moment from the onset of the eruption. This provides a valuable tool to assess best- and worst-case scenarios for SO₂ pollution during ongoing events.

Eruptive Mₛ calculations are strongly dependent on lava flow volumes. Hence, when it comes to comparing the 800–1240 AD Fires with the 2021–2024 eruptions, a more relevant parameter is the mean daily SO₂ emissions, which also is an important parameter from a hazard perspective. We have estimated daily SO₂ emissions for the 800–1240 AD Fires using MOR values calculated by Oskarsson et al. (2024), in the range of 3–119 m³/s (Table 1, Eq. S-3). Mean daily SO₂ emissions during the medieval eruptions likely ranged between 1000 t/day and 111,000 t/day (Fig. 2c). In comparison, during the 2021, 2022 and 2023 Fagradalsfjall eruptions, we calculate average daily SO₂ emissions of 5000, 3780 and 3360 t/day, respectively. The estimate for the 2021 Fagradalsfjall eruption is in agreement with the majority of measured daily SO₂ emissions throughout the 2021 Fagradalsfjall eruption, in the range of 1000–7600 t/day (Esse et al., 2023), and with daily SO₂ emissions of 5240 ± 2700 t/day, calculated assuming 0.97 ± 0.5 Mt total mass of SO₂ (Barsotti et al., 2023). In contrast, the December 2023 Sundhnúkar eruption released 32,000 t/day SO₂ (Table 1). Our calculations highlight that future eruptions in the RP may have the potential to release significantly more SO₂ on a daily basis than the 2021–2024 eruptions.

SO₂ emissions during the 800–1240 AD Fires and the 2021–2024 eruptions are small compared to those during the 2014–2015 Holuhraun basaltic eruption (9.2 Mt SO₂; Pfeffer et al., 2018). However, volcanic eruptions in the RP are potentially considered to be more hazardous due to their proximity to inhabited areas, to the international airport and to the large number of visitors expected at eruption sites (Barsotti et al., 2023). To assess the health hazard for potential future eruptions, we built seasonal wind roses, for the period 2012–2022, reflecting dominant wind speeds and directions in the RP (Hersbach et al., 2023). We find that, most of the time, prevailing winds blow towards the NW–NE, suggesting different SO₂ health hazard potentials associated with eruptions within different volcanic systems (Fig. 3). The prevalent NW wind blowing direction suggests that volcanic SO₂ emissions could still be disruptive to the Keflavik Airport area if there were a long-duration eruption.

Figure 2 (a) Variation of vent Mₛ as a function of eruption volume for the 800–1240 AD Fires, the 2021–2023 Fagradalsfjall eruptions and the 2023 Sundhnúkur eruption. At a given volume, straight lines allow to calculate potential Mₛ corresponding to maximum and minimum pre-eruptive S concentrations measured across the RP. Inset plot shows most common potential Mₛ across the RP. (b) Magnitude of potential Mₛ as a function of eruption volume for the 800–1240 AD Fires, the 2021–2023 Fagradalsfjall eruptions and the 2023 Sundhnúkur eruption. At a given volume, straight lines allow to calculate potential Mₛ corresponding to maximum and minimum pre-eruptive S concentrations measured across the RP. Inset plot shows most common potential Mₛ across the RP. (c) Daily SO₂ emissions are calculated using MOR values and associated uncertainties from Oskarsson et al. (2024). Blue histogram indicates measured SO₂ emissions during the 2021 Fagradalsfjall eruption (Esse et al., 2023). Data are coloured according to the volcanic system and only lavas with known volumes or MORs are included in the plots.

Even if eruptions in the RP produce little ash, sulfate aerosol in the atmosphere could reduce visibility and air quality (Pattantyus et al., 2018). Eruptions in Brennisteinsfjöll are the most hazardous for Reykjavík, especially in spring and autumn seasons, as SO₂ is likely to be blown towards the capital area. Eruptions in Reykjanes pose a minimal hazard as winds tend to blow away from inhabited areas. During assessment of possible eruptive scenarios in the RP, our estimates provide key input parameters to model the release and dispersion of volcanic SO₂ into the atmosphere. Our results can be used to inform SO₂ pollution hazard assessments for potential eruptive scenarios and prompt action and mitigation plans during ongoing volcanic crises in the RP.

Acknowledgements

This research was financially supported by a NordVulk fellowship awarded to AC and by the Icelandic Research Fund (grant 228933-052). We acknowledge support from the Gosvá project, a research programme on the assessment of volcanic hazard risks in Iceland led by the Icelandic Meteorological Office (IMO). SAH acknowledges support from the Icelandic Research Fund (Grant #196139-051). We thank Christoph Kern, two anonymous reviewers, and editor Ambre Luguet for their constructive comments, which significantly improved the quality of the manuscript.

Editor: Ambre Luguet

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2417.

References

