A baseline for the Sn isotopic composition of the upper continental crust

E. Kubik1*, F. Moynier1, J.-X. She1,2,3, R.L. Rudnick4

Abstract

We report high precision Sn isotopic compositions, expressed as $\delta^{122/118}$Sn relative to the NIST3161a standard, for the fine grained matrix of 24 glacial diamictite composites. The diamictites were deposited from the Mesozoic to the Palaeozoic and sampled from four continents (Africa, Asia, North and South America). They are relatively homogeneous in $\delta^{122/118}$Sn, ranging from 0.15 to 0.32 ‰ with an average $\delta^{122/118}$Sn value of 0.22 ± 0.14 ‰ (2 s.d., $n = 24$). The Sn isotopic composition of the diamictites is not influenced by chemical weathering, depositional age, geographic setting, atmospheric oxygen content or magmatic differentiation processes in the source region. As such, the average provides a robust estimate of the Sn isotopic composition of the bulk upper continental crust (UCC). This baseline is within the range of, but isotopically lighter than, the current depleted mantle estimate (0.37 ± 0.09 ‰; 2 s.d., $n = 12$) and bulk silicate Earth (0.38 ± 0.11 ‰; 2 s.d., $n = 9$). It also overlaps with the very few available measurements made on andesites, granites, a granodiorite and a rhyolite.

Introduction

Continents are a combined product of both differentiation and plate tectonics (Rudnick, 1995), and constitute a unique feature of Earth. As a significant planetary reservoir, the mechanisms producing continental crust, as well as the chemical and physical interactions of continents with other reservoirs, are key processes that need to be defined to understand Earth as a differentiated, dynamical planet. One clue to understanding how continental crust forms comes from its bulk major and trace element composition, which is similar to that of magmas found above subduction zones (e.g., Rudnick, 1995; Tatsumi, 2008). However, the continental crust is highly heterogeneous, posing a significant challenge in estimating its average composition. Nevertheless, making such estimates is necessary to understand its origin and its contribution to element cycles within the bulk silicate Earth. Because of intracrustal differentiation, incompatible elements are concentrated in the upper continental crust (UCC), making this region the most critical for understanding the bulk crust composition. Estimates of the average composition of the UCC have primarily been obtained through two approaches: large scale bedrock sampling with grid-based averages and analyses of fine grained sedimentary rocks such as shales, loess and the matrix of glacial diamictites (e.g., Rudnick and Gao, 2014; Gaschnig et al., 2016).

Here we use the fine grained matrix of glacial diamictites to estimate the stable isotope composition of tin (Sn) in the UCC and use these results to infer crustal formation and evolution processes. We compare this result with that of igneous rocks. This UCC estimate can be used as a baseline for studying Sn mineralisation, with implications for ore-forming processes (Zhou et al., 2022; Wu et al., 2023).

Tin is a moderately siderophile, chalcophile and volatile element (Jochum et al., 1993). It exhibits incompatible and lithophile behaviour during igneous differentiation and, as such, is concentrated in the crust relative to the mantle. In magmatic systems, Sn is incompatible in most phases but compatible in ilmenite, its main host, where it exists as VI fold coordinated Sn⁴⁺ (Klemme et al., 2006; Rudnick and Gao, 2014). Within the continental crust, Sn is concentrated in highly evolved granitic magmas derived from partial melting of metapelitic rocks (Jochum et al., 1993). Systematic element distribution patterns in these granites point to fractional crystallisation as the main process controlling magmatic evolution and Sn enrichment (Lehmann, 2021). All Sn — a medium scale “critical metal” — production originates from continental crustal ore deposits consisting of Sn granites, pegmatites and Sn porphyries (Lehmann, 2021). Finally, Sn is an insoluble element that is not mobilised during chemical weathering (White, 2018).

Tin is concentrated in dense minerals of the continental crust, which are likely sorted during wind- or water-driven transport (Gaschnig et al., 2016), which hinders using the geochemistry of wind- or water-transported sedimentary rocks (e.g., shales, periglacial and desert loess) to obtain a robust Sn
isotopic composition for the UCC. On the other hand, glacial diamictites, which are produced by mechanical erosion of the bedrock by glaciers, deposited in the form of glacial till, and subsequently lithified in a rapid and low temperature process that minimises chemical weathering (Li et al., 2016), may be a useful means to estimate the Sn isotopic composition of the UCC. Tin is one of the few trace elements that shows secular increase in abundance in glacial deposits through time (Gaschnig et al., 2016) due to its incompatible behaviour. Significant Sn isotope fractionation has been reported in terrestrial samples (Badullovich et al., 2017; Wang et al., 2018) and in a number of geological processes such as liquid-vapour separation (She et al., 2020), redox processes (Roskosz et al., 2020), metal-silicate equilibrium (Kubik et al., 2023), and hydrothermal processes (Liu et al., 2021), indicating that Sn isotopes may be fractionated during continental crust formation. This raises the question of whether there may also be a secular evolution of the Sn isotopic composition in glacial diamictites. In this study, we use glacial diamictite composites derived from units with depositional ages spanning 3 Ga and collected from four continents to study secular changes, geographic influence, the effects of chemical weathering and magmatic differentiation on $\delta^{122/118}$Sn and to calculate an average Sn isotopic composition of the UCC.

Materials and Methods

Glacial diamictites are produced by mechanical erosion of Earth’s surface by ice sheets, which dump their load upon melting. Many, though not all of the 24 diamictite composites investigated here were deposited in a shallow marine environment and are, by definition, unsorted and experienced little post-depositional weathering (Li et al., 2016). Many are unmetamorphosed, but some experienced up to greenschist facies conditions (Gaschnig et al., 2016; Han et al., 2023). The diamictites have depositional ages between 2.9 and 0.3 Ga, and wide geographic origins, spanning four modern continents. These samples were previously analysed for their major and trace elements compositions (Gaschnig et al., 2014, 2016), for their stable Li, N, O, Si, K, Ti, V, Fe, Ni, Zr, Mo, Ba, Ce isotopes, radiogenic Sm-Nd, Hf-W, Re-Os isotope compositions (full listing of these studies in Li et al., 2023), and U-Pb and Lu-Hf analyses of detrital zircon (Gaschnig et al., 2022). These studies demonstrated that, although there is great chemical heterogeneity in the individual samples and even in the composites, the samples nevertheless can be used to estimate the average composition of the UCC (e.g., Gaschnig et al., 2016).

Tin purification and subsequent isotope measurements were performed in a class-100 clean room environment using class-10 laminar flow hoods at the Institut de Physique du Globe de Paris. Tin purification uses the ion exchange chromatography and measurements employ a double spike protocol described in Creech et al. (2017). Tin isotope ratios were measured using a Thermo-Scientific Neptune Plus. The purification method and analytical parameters are detailed in the Supplementary Information.

Results

All Sn isotopic ratios herein are expressed as $\delta^{122/118}$Sn relative to the NIST3161a standard and uncertainties are 2 standard deviations. The glacial diamictites are generally isotopically homogeneous, except for two outliers (0.00 and 0.38 ‰), with $\delta^{122/118}$Sn values between 0.15 and 0.32 ‰ with an average of 0.22 ± 0.14 ‰. These values overlap with the very few measurements performed on granite and granodiorite reference materials (from 0.20 to 0.52 ‰, Creech et al., 2017; Wang et al., 2022; She et al., 2023b), and are isotopically heavier than peridotites (average of −0.03 ± 0.49 ‰, Wang et al., 2018).

Discussion

Tin shows a secular increase in abundance with time in the diamictite composites (Gaschnig et al., 2016), with higher concentrations in the Neoproterozoic and Palaeozoic than Mesoarchean and Palaeoproterozoic samples. This is attributed to its incompatible behaviour and therefore preferential partitioning into melt during partial melting and crystal fractionation. Despite this increase in concentration, there is no resolvable change in the $\delta^{122/118}$Sn values of glacial diamictites through time (Fig. 1a). This is in agreement with the Sn isotopic ratios measured in komatitites (Badullovich et al., 2017), which show that samples across a wide range of degrees of partial melting produce variable Sn abundances in the melts, but identical Sn isotopic compositions. Thus, the transition from mafic to felsic UCC at the end of the Archean does not translate into a change of Sn isotopic composition. This absence of secular change therefore suggests a relatively constant Sn isotopic composition of the

![Figure 1](https://doi.org/10.7185/geochemlet.2422)
SiO2 and Al2O3 abundances, and very low δ122/118Sn and their geographic location (Fig. 1b), demonstrating a wide-spread spatial homogeneity of the UCC with respect to Sn isotopic compositions.

The diamictites record variable weathering signatures, which mostly reflect the material that the glaciers sampled (Li et al., 2016). We therefore evaluated potential chemical weathering effects on Sn isotopes. Chemical weathering proxies include the chemical index of alteration (CIA, corresponding to molar Al2O3/(Al2O3 + K2O + Na2O + CaO*) with CaO* corrected to remove the contribution of apatite and carbonate) and Al2O3/SiO2 which increases due to Al2O3 enrichment during clay formation (Gaschnig et al., 2014). The Sn isotopic compositions of glacial diamictites reported in this study do not correlate with any of these proxies (Fig. 2), consistent with Sn’s low solubility (White, 2018) and indicating that chemical weathering did not fractionate Sn isotopes. Therefore, glacial diamictites can be used to (1) establish an average Sn isotopic composition of the UCC, and (2) study other processes influencing UCC composition, such as igneous differentiation, without these signatures being obscured by chemical weathering effects.

The effect of the transition from mafic to more felsic crustal sources on the Sn isotopic composition of glacial diamictites was assessed using two different proxies for igneous differentiation (Fig. 3). The Th/Sc ratio can be used to distinguish mafic from felsic sources due to the compatible behaviour of Sc as opposed to the incompatible behaviour of Th, with high Th/Sc therefore indicating a granitic source. The Th/Sc of the diamictite composites increases between the Mesoarchean and Palaeoproterozoic sites increases between the Mesoarchean and Palaeoproterozoic (Gaschnig et al., 2016) while the Ni/Lu ratio decreases exponentially from the Mesoarchean, which sampled a UCC with very high Ni abundance. There is no correlation between either of these proxies and the Sn isotopic compositions in the glacial diamictites. This indicates that Sn isotopes are largely unaffected by crustal differentiation over time and by the possible evolution of the crustal source from mafic to a more felsic composition.

Two diamictite composites, Mozaan (0.38 ± 0.01 ‰) and Bruce (0.00 ± 0.02 ‰) are significant outliers in terms of their Sn isotopic signatures, though their Sn abundances are not anomalous. The Archean Mozaan diamictite contains exceptionally high Fe2O3, high magnetite content (Han et al., 2018), low SiO2 and Al2O3 abundances, and very low δ28Si (Murphy et al., 2022), interpreted as reflecting a significant contribution from banded Fe formation (Gaschnig et al., 2014; Murphy et al., 2022). This suggests that magnetite that precipitates from seawater may preferentially incorporate the heavy isotopes of Sn. The origin of the light Sn isotopic signature measured in the Bruce diamictite remains unclear but could be attributed to a change in redox conditions, which can translate into Sn isotopic fractionation.

The Sn isotopic composition of glacial diamictite composites is not significantly influenced by chemical weathering, depositional age, geographic setting, or average UCC compositional changes due to igneous differentiation processes. The δ122/118Sn of these samples thus provide an ideal means by which to derive a robust estimate of the Sn isotopic composition of the UCC. The arithmetic mean of δ122/118Sn in all measured diamictites corresponds to 0.22 ± 0.14 ‰ (2 s.d., n = 24). This UCC Sn isotopic estimate is on the lower side but within error of the depleted mantle (0.37 ± 0.09 ‰, as sampled by mid-ocean ridge basalts; She et al., 2023a), and two BSE estimates based on komatiites (0.38 ± 0.11 ‰) and a peridotite (0.17 ± 0.07 ‰) (Fig. 4).

Significant Sn isotope fractionation has been reported to occur through three igneous processes: ilmenite-melt fractionation (Badullovich et al., 2017), redox changes (Roskosz et al., 2020) and during partial melting (Wang et al., 2018). Here, we evaluate the potential of each of these processes in establishing the Sn isotopic composition of the UCC.

Ilmenite crystallisation has been proposed as a fractionating process during magmatic differentiation, based on a suite of samples from the Kiluaea Iki lava lake (Badullovich et al., 2017). Ilmenite crystallisation is predicted to enrich silicate melts in light Sn isotopes, which could explain the observed offset between the Sn isotopic compositions of the diamictites and that of MORB and komatiites (Fig. 4). We also note identical Sn isotopic signatures measured in the basalt-andesite and andesite samples of the Kiluaea suite and in the glacial diamictites. However, this process is more likely to generate intracrustal heterogeneities as opposed to fractionating Sn isotopes in the continental crust with respect to the mantle, thus shifting the bulk isotopic composition of the UCC. Indeed, in Badullovich et al. (2017), the differentiation suite from basalt to andesite generates a 0.20 ‰ difference between the end members which correlates with TiO2. However, the evolution of the continental crust from mafic to felsic does not produce such a trend in Sn isotopic ratios (Fig. 1a) and Sn isotopes do not correlate with TiO2 (Fig. 3d).

Figure 2 δ122/118Sn of glacial diamictites as a function of two indicators of chemical weathering: (a) CIA (chemical index of alteration) values and (b) Al2O3/SiO2. All elemental compositions used are from Gaschnig et al. (2016).
In fact, the Sn isotopic variability within our data set, excluding outliers, is <0.20 ‰ as the diamictites range from 0.15 to 0.32 ‰, suggesting that ilmenite crystallisation did not play a major role in fractionating the Sn isotopic composition of the continental crust from the mantle.

First principle calculations (Wang et al., 2021) and nuclear resonant inelastic X-ray scattering studies (Polyakov et al., 2005; Roskosz et al., 2020) have also shown that the force constants of Sn substantially increase from Sn$^{2+}$- to Sn$^{4+}$-bearing materials, implying that heavy Sn isotopes are enriched in Sn$^{4+}$- relative to Sn$^{2+}$-bearing materials. As Sn$^{4+}$ is more incompatible than Sn$^{2+}$, the continental crust ought to be enriched in heavy Sn isotopes compared to MORB. However, the UCC Sn isotopic estimate derived from our measurements is within error of MORB samples (Fig. 4) and depleted mantle estimates (She et al., 2023a). This suggests that the isotopic fractionation identified from different Sn force constants measured between Sn$^{2+}$- and Sn$^{4+}$-bearing synthesised melts (Roskosz et al., 2020) is not the main process establishing the Sn isotopic composition of the UCC. Additionally, we tested the influence of oxidative weathering on the Sn isotopic composition of the diamictites (Gaschnig et al., 2014). There is no correlation between our data and Mo/Mo* (Fig. 3c) demonstrating that the Sn isotopic composition of the diamictites is not affected by secondary redox related processes.

The fractionation of Sn isotopes during partial melting has been proposed based on the observed offset between the isotopic composition of basalts and peridotites (Wang et al., 2018). However, the melt products appear to be unaffected by

Figure 3 δ$^{122/118}$Sn of glacial diamictites as a function of two differentiation indicators: (a) Th/Sc ratio, including Sn abundances in the corresponding samples, and (b) Ni/Lu ratio, as well as (c) Mo/Mo*, a proxy for oxidative weathering (Gaschnig et al., 2014) and (d) TiO$_2$ abundance, an indicator of ilmenite crystallisation. All trace element data were compiled from Gaschnig et al. (2016).

Figure 4 Sn isotopic compositions expressed as δ$^{122/118}$Sn of terrestrial igneous samples (Badullovich et al., 2017; Creech et al., 2017; Wang et al., 2018; She et al., 2023a, 2023b) compared to those of glacial diamictite composites analysed in this study.
the percentage of partial melting, as the Sn isotopic compositions across a series of komatiites reflecting a wide range of degrees of melting (Badullovich et al., 2017), and MORB from ridges with very different spreading rates (She et al., 2023a) are similar. The currently limited data available for Sn isotopic ratios in peridotites shows a large variability that hampers deciphering magmatic processes. Moreover, our Sn isolate UCC estimate based on glacial diamictite analysis—which is constant through time and uncorrelated to any proxy—suggests that the continental crust was formed from a source that had a constant bulk Sn isotopic composition, not significantly different from that of the UCC. The BSE is therefore likely to have a similar signature to the depleted mantle, in agreement with the identical estimates of the depleted MORB mantle (0.37 ± 0.09 ‰; She et al., 2023a) and BSE of Badullovich et al. (2017) corresponding to 0.38 ± 0.11 ‰. Both these estimates largely overlap within error with the proposed UCC estimate derived from our measurements. Measurements of Zr isotopes in the glacial diamictites also yield compositions that are constant through time but slightly heavier than the BSE, which has been interpreted as a large scale mixing of isotopically heavy felsic material with isotopically light mantle-like mafic material (Tian et al., 2021). In the case of Sn, available data for felsic igneous rocks (Fig. 4) are not particularly isotopically light, suggesting that such a mixing process is not required to explain the slightly isotopically light signature of the UCC. However, very few data are available for evolved igneous rocks and future studies on this topic are expected to bring new insight regarding Sn isotope behaviour in igneous rocks.

Synthesis

We propose a new estimate for the Sn isotopic composition of the UCC based on high precision measurements of glacial diamictite composites of 0.22 ± 0.14 ‰ (2 s.d., n = 24). The Sn isotopic composition of the diamictite is not influenced by chemical weathering, depositional age, geographic setting, igneous differentiation or any of the previously reported Sn-fractionating processes. Our data suggest limited fractionation between the BSE, the depleted MORB mantle and the UCC, in agreement with previous studies investigating Sn isotope behaviour in magmatic processes (Badullovich et al., 2017; Creech et al., 2017; She et al., 2023a, 2023b). Moreover, our estimate for the UCC Sn isotopic composition provides a useful baseline to study Sn isotope fractionation during cassiterite crystallisation (Wu et al., 2023) with direct applications for tracing Sn mineralisations (Zhou et al., 2022).

Acknowledgements

The authors thank two anonymous reviewers and editor Raúl Fonseca for their detailed reviews which greatly improved our manuscript. We thank Pascale Louvat and Dimitri Rigoussen for their technical support during MC-ICP-MS measurements. FM acknowledges funding from the ERC METAL (No. 101001282) and the UnivEarthS Labex program (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). This research work was supported by the IPGP analytical platform PARI, region Île-de-France SESAME Grant No. 12015908 and DIM AÇAV+.

Editor: Raúl O.C. Fonseca

Additional Information

Supplementary Information accompanies this letter at https://www.geochemicalperspectivesletters.org/article2422

© 2024 The Authors. This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0 License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www.geochemicalperspectivesletters.org/copyright-and-permissions.

References

